磁性工作物材料の精密磁気研磨
—複数の永久磁石を工具とした場合の研磨効果—

呉 鮮華*1、進村武男*2

Precision magnetic abrasive finishing process for ferromagnetic metallic materials
— Effect of finishing when plural permanent magnets were used as a tool —

Yanhua ZOU and Takeo SHINMURA

Key words: magnetic field assisted finishing process, magnetic machining jig, magnetic particle, abrasive slurry, machining characteristics, surface roughness, material removal

1. 緒 言

金型表面の鏡面仕上げの多くは手作業に依存しているため、機械的に効率よく精密仕上げが得られる新技術が求められている。磁気研磨法は電磁加工を示す磁性粒子により、部品の形状精度を維持しながら面精度を向上できる特徴をもつ加工法である。

金型材料には磁性材料が多く用いられるため、磁性金属材料の磁気研磨法は重要研究課題である。非磁性工作物材料の磁気研磨法では、特に磁性粒子が強磁性粒子表面の磁性エッジ部を発生させ、磁極と工作物間に粒子プラシを形成し、工作物表面の仕上げを実現できる。しかし、磁気研磨法で磁性工作物材料に適用する場合に、粒子プラシが中間で発生する現象を発生するため、磁性粒子の粉末・磁粉化が進む。また工作物表面に磁性粒子の残留が見られる。

本研究は、磁性工作物を加工対象として、複数の永久磁石を用いて閉磁気回路を構成し、工具側磁極を変える永久磁石表面に磁性粒子を磁気吸引させて、さらに磁気回路の磁力線に沿って形成させた粒子プラシを加工する新しい方法を提案している。工具側の磁気回路を構成させることにより磁性粒子を保持する磁力を向上させることができ。本加工法の実現性と特性および加工実験の結果について報告する。

2. 加工方法および加工装置

図 1(a)に、従来の平面磁気研磨法の加工装置の模式図を示す。図示のように、研磨装置を設置するフラップ盤テーブルに搭載できる。電磁コイルにより発生した磁場は、工具側磁極に設置した永久磁石により、工具側磁極を磁気吸引させ、さらに磁気回路内の磁力線に沿って形成させた粒子プラシを加工する新しい方法を提案している。工具側の磁気回路を構成させることにより磁性粒子を保持する磁力を向上させることができる。本加工法の実現性と特性および加工実験の結果について報告する。

*1 宇都宮大学大学院: 〒321-8585 宇都宮市東栄町7-1-2
*2 宇都宮大学大学院工学研究科: 同上
（学会参加日: 2005年7月25日）
図2 加工装置の外観写真と加工部の拡大写真

図3 表面粗さと加工量の時間的変化および表面粗さのプロフィル

図4 加工前後の工作物表面のSEM写真

表1 実験条件

<table>
<thead>
<tr>
<th>工作物</th>
<th>SPCC、厚さ80×60×1.1mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>磁粒</td>
<td>諧音Nd-Fe-B系、磁石、2個</td>
</tr>
<tr>
<td>厚さ</td>
<td>10×10×10mm</td>
</tr>
<tr>
<td>供給速度</td>
<td>15mm/min</td>
</tr>
<tr>
<td>加工回数</td>
<td>8回</td>
</tr>
<tr>
<td>加工距離</td>
<td>ストローク:40mm</td>
</tr>
<tr>
<td>磁粒粒子</td>
<td>電解蒸発法(平均粒子径33μm)15g</td>
</tr>
<tr>
<td>磁性材</td>
<td>ダイアモンド磁粒(平均粒子径8〜16μm)2g</td>
</tr>
<tr>
<td>磁性液</td>
<td>水溶性磁性液、15mL</td>
</tr>
</tbody>
</table>

3. 加工結果および考察

図3に、表面粗さと加工量の時間的変化および表面粗さのプロフィルを示す。図示のように、4回往復加工で加工面はほぼ平滑化され、7μmRa(0.76μmRz)の加工前表面粗さを0.90μmRa(0.16μmRz)に向上できた。4回往復加工後の表面粗さは向上度はやや低く、8回往復加工で安定状態に落ち着くことがわかる。加工量は直線的に増加する。図4に加工前後工作物表面のSEM写真を示す。加工前の表面粗さはほぼ均一な研磨表面が得られている。本実験条件では、加工面を鏡面にできていないが、微細な陣地が観察される。加工後の表面粗さが0.90μmRzに向上できることが明らかになった。

4. 結言

磁性工作物材料に対する新しい磁気研磨法として、複数の永久磁石を工具磁石とした加工法を提案した。SPCC磁性鋼板を用いて実験した結果、磁性粗粒の残留現象がなくなり、7μmRaの加工表面粗さを0.90μmRzに向上できることが明らかになった。

謝辞

本研究は日本学術振興会の科学研究費補助金（特別研究員奨励費1705076）の援助を受けた。お礼申し上げます。

参考文献

1) 近藤武男、磁気研磨法による曲面の平滑加工に関する研究（第1報）—磁気実験—、日本機械学会論文集、55、485（1987）202
2) 近藤武男、平面磁気研磨法の研究（第2報）—非磁性工作物材料の研磨特性、精密工学会論文、55、71（1989）1271
3) 伊藤泰、磁気接続用磁気研磨法に関する研究、博士論文、京都大学、2002年
4) 伊藤泰、近藤武男、磁気接続加工法による磁石媒体の精密化上げ—新しい磁性磁粒の開発とその研磨特性、精密加工学会論文、46、3（2002）141
5) 鈴木英、近藤武男、磁気加工ジュールを用いた磁気接続加工法に関する研究—永久磁石円筒面の精密仕上げ—、精密加工学会論文、48、8（2004）444
6) 山田一、宮澤永次郎、別所天一、磁気接続工学、学術社、1978年。