稲の細胞質差異に関する研究

III. 野生稲細胞質をもつ栽培稲型植物の不稔花粉について

戸田 健夫・勝尾 清*（東北大学農学部）

栽培稲（藤板5号）と野生稲（支那野生稲）との間で相互に結合変を行なうと、藤板5号の細胞質をもつ支那野生稲型植物（以後稔稲と称する）の稔稲は常にあるが、支那野生稲の細胞質をもつ藤板5号型植物（以後不稔稲と称する）は稔稲でなかった（勝尾・水島，1958）。この不稔稲は、結穂を変異と細胞質変異の協同作用によると考えられる（勝尾・水島，1958）。この不稔稲の花粉は、柱頭上では、自雑および藤板5号（

これらの植物は自然によって継続された（不稔稲は、その世代も含めて10%以下を除く）。実験結果は、1962年5月4日から5月11日までに各個ボートに播種し、以後10日間隔で3回播種した。6月11日以後10日間隔でそれぞれの播種区を5分間の1aの間隔で播種した。支那野生稲および不稔稲に対しては7月1日から7月20日まで毎日処理を行なった。

多糖類の検出：穂をCarnoy’s fluidで42時間固定後、常法の如くパラフィン切片を作りPASの反応を行なった。

人工発芽試験：人工発芽すべてVan Tieghemの室温を用い懸滴法で行なった。人工培地は、山田・穂月（1954）が稲花粉の人工発芽で用いた澱粉・蔗糖培地を主として用い、併せて寒天・蔗糖培地を用いた。人工培地は次の組成のものが最良の発芽率を示した。

a) 澱粉・蔗糖培地（可溶性澱粉5%＋蔗糖30%）
b) 寒天・蔗糖培地（寒天1%＋蔗糖20%）
ともに振揺しながら冷却する。特にb) 培地は寒天凝形成を阻止することが必要である。なおつきの高張力培地も附随的に用いた。

c) 可溶性澱粉5%＋蔗糖40%
d) 可溶性澱粉5%＋蔗糖30%＋グルコース1%

これらの人工培地はカバーグラス上の培地として用い、開頭直後の希釈花粉を直接人工培地に散置し、室温で発芽させ、一定時間後ヨード・ヨードカリ反応と生体観察を行なった。生体観察は、温度の急激な変動を防ぐため、可能な限り暗視野で行なった。

原形質輸出実験：pH 6.5、水温20℃の蒸溜水をホースライドグラス（硬質）に3滴入れ、開頭直後の穂の中位の新鮮な花粉を直接散置し、直ちに顕微鏡に設置し暗視野中で2分、4分、6分、8分、10分後原形質輸出を観察した。

供試植物は次のものである。

1) 栽培稲：藤板5号，O. sativa L.
2) 野生稲：支那野生稲，O. sativa L. f. spontanea
3) 戸田変後代植物

（1）F1藤板5号（九）×支那野生稲（九）に支那野生稲を反復親として連続2回戸田変後代にえられた藤板5号の細胞質をもつ支那野生稲型の自殖第5代植物（稔稲）。

（2）F1支那野生稲（九）×藤板5号（九）に藤板5号を反復親として連続2回戸田変後代にえられた支那野生稲の細胞質をもつ藤板5号型の自殖第5代植物（不稔稲）。

* 現農林省農業試験場崎枝支場
1964年9月23日受領
Table 1. Pollen germination on starch and agar culture media at 25~29°C.

<table>
<thead>
<tr>
<th></th>
<th>Starch media*</th>
<th>Agar media</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min.</td>
<td>max.</td>
</tr>
<tr>
<td>Fu.</td>
<td>57.1 (%)</td>
<td>75.0 (%)</td>
</tr>
<tr>
<td>ms.</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ns.</td>
<td>55.7</td>
<td>75.2</td>
</tr>
<tr>
<td>Ch.</td>
<td>52.8</td>
<td>76.2</td>
</tr>
</tbody>
</table>

* 15 min., ** 5 min., and *** 10 min. after setting on, respectively. Starch media: 5% starch and 50% sucrose. Agar media: 1% agar and 30% sucrose.

操作終了後直ちにヨード・ヨードカリ陰性を示す酵素液量を観察した。

糖熟検出：開領直後のそれぞれの植物の花粉(発芽は除外)を風乾後それぞれ0.1gずつ取り、円錐型乳鉢で蒸溜水0.1ccとともに磨砕したもの直ちに東洋漉紙No.51にそれぞれ0.02ccずつスポットした。試料溶液：氷酢酸：水(4:1:2)の展開溶媒で6時間(25°C)展開後ア＝リニフタール酸で発色させた。

II. 実験結果

不稔種花粉の発現過程のうちで、発元分裂直後から第2収縮期の時期に、稔種および両親と比較して、特に多糖類の少ないことは藤尾(1960)がすでに報告しているが本実験では稔に4分子期での多糖類の少ないことが注目された。

人工発芽試験での発芽率は、実験当日の気象条件で変動する傾向がみられたが、1962年8月20日〜8月24日間のに行なった人工発芽試験の近床15分後に最低および最高発芽率は、Table 1のとおりであった。

山田ら(1954)は近床24時間後に観察しているが、本実験の場合は24時間後に発芽率をもとより2分としているものと考えられる。Table 1でわかるように、両親および稔種は安定した発芽率を示したが、不稔種花粉は、著

Fig. 1. Pollen germination on starch and sucrose culture media, 15 min. after setting on. (1) Fujisaka No.5(Fu.), (2) a strain of Chinese wild rice, O.sativa f. spontanea (Ch.), (3) a male-sterile, Fujisaka No.5-type strain with spontanea cytoplasm (ms.), and (4) a normal spontanea-type strain with Fujisaka No.5 cytoplasm (ns.). Same abbreviations are applied to the following.
者の観察した範囲では全く発芽しなかった（不稔種は 0～10％の稔性を示すので発芽花粉が期待される）。発芽状態は Fig. 1に示される。

つぎに人工培地で発芽可能なすべての花粉が、発芽孔側壁とその対側壁で構造を異にすることが観察された。しかし、不稔種花粉ではこのような現象はどの花粉粒についてもみられなかった。

さらに、開終直後の花の花粉のヨード・ヨードカリ反応を行なった結果 Fig. 2の左列に示されている。一方開終前の花の花粉では、両親および稔種、不稔種ともに澱粉粒は花粉粒内全体に平均して分布していた（Fig. 2 の右列）。開終後の花の花粉では、両親および稔種不稔種ともに粒の形に大、小はあったが粒の大小にかかわらず以上の事実が観察された。

両親および稔種にみられる澱粉粒の発芽孔側壁へのか

たより（澱粉粒の localization）は、吸水後の原形質流動によって消失し、発芽した花粉粒内（置床 15 分後）には全くみられなくなる (Fig. 3)。c, b）の高張塩地中も長時間後には、澱粉粒のかたよりは消失し (Fig. 4)，のち破裂してしまう。

両親および稔種を人工培地 a）に散下後、花粉管伸長について経時的に観察した結果は次のようであった。

1) 置床 2～4 分後吸水によって花粉管は肥大し、発芽孔の対側の稜および花粉管内側の細胞顆粒の不規則な運動が観察される。ついで発芽孔の弁がとれる。
2) 4～10 分後に花粉粒内外方に原形質流動が観察される。ついて発芽起始が形成され花粉管伸長がおこる。

一方、不稔種花粉子、培地 a および b では、吸水による膨大とともに原形質が流出してしまう。

Fig. 5 は、浸透後 2～10 分までのそれぞれの時間とその原形質流出変数の観察全数に対する百分率を示している。これによると、両親および稔稈花粉粒では浸透後 4 分までに全体の 50% の花粉が原形質含出を行なうのにに対して不稔種花粉では 10% 減っていた。さらに不稔花粉では研磨的にはほぼ一定の原形質含出率を示し、一定時間内の含出単位数も少なかった。ここで同一細胞質をもつ植物、すなわち、藤枝 5 号と稔稈、支麻野生稈と不稔稈の原形質含出曲線が似ていることは興味あることである。

Table 2. Amylose activity

<table>
<thead>
<tr>
<th>Fu.</th>
<th>Ch</th>
<th>ns</th>
<th>D37℃</th>
<th>=5/3 ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>ms</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Saccharides in mature pollen

<table>
<thead>
<tr>
<th></th>
<th>Fu</th>
<th>ms</th>
<th>ns</th>
<th>Ch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maltose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glucose</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

アミラーゼ活性変動測定において、ヨーク・ヨーク及び、反応体を示した試験管の酵素液量は、両親および稔稈、不稔稈ともに 3 ml であった。すなわち、Table 2 に示すように、両親および稔稈、不稔稈ともに酵素液 1 ml が 37℃、3 時間の間に 1% 可溶性澱粉溶液をそれぞれ 5/3 ml 分解したことになる。このことから、両者とも分解する可溶性澱粉溶液の相対量が少ないにもかかわらず活性度は同じであることがわかる。

開頭直後の花の花粉に含まれる糖類は Table 3 の如くであった。

両親および稔稈，不稔稈ともに，開頭直後の花の花粉粒内に，醸造糖としてグルコース，マルトースを含み，その含量に差異はみられたかった。

III. 論 議

藤枝 5 号と支麻野生稈の同種異代にあらわれた細胞質流動は両親および稔稈の協同作用による維性不稔に関して形態的ならびに生理的な原因の検討を行おう。

従来，ある種の維性不稔植物では，花粉母細胞の成熟分裂は正常に終了することが，成熟分裂直後から第 1 および第 2 分裂期にかけて花粉脱化がおこるとわれられ（FUKASAWA, 1956; JONES and CLARKE, 1943）また 4 分子直後に退化がおこらない場合でも不稔花粉の大きさは，正常花粉にくらべて明らかに小さいこと（BATRESS and GAIDNAR, 1921; JONES and CLARKE, 1943）が報告されている。しかし著者の一人がすでに報告したも，不稔種花粉は形態的には正常であった（藤枝，1959; 1960）。このことに関して興味ある点は，不稔種花粉の場合，両親および稔稈とくらべて成熟分裂直後から第 2 分裂期にかけてのタック細胞と花粉の多糖類含量の少ないことが示す 4 分子期での多糖類の量の少ないことである。このことおよび他の維性不稔植物の花粉脱化が，4 分子期を境にしておこっていることや，木原・平吉（1942）が指摘しているように，第 1 期細胞が外殻形成期および発芽孔形成期を含む花粉発生過程での重要な時期であると考えあわせると，不稔種花粉の 4 分子期前に多糖類の少ないことが，花粉形成，特にその内部構造に重要な影響を与えるのではなかろうかと考えられる。

開頭直後の両親および稔稈にみられる澱粉粒の localization は，開頭前花の花粉では，両親および稔稈，不稔稈ともに澱粉粒が花粉粒体内に分布しているので，開頭に要する僅か数時間の間にここ現象であると考えられる。またこの原因については，澱粉粒が発芽孔の反対側板で分解するために含まれる澱粉粒が発芽孔側板に移行するための機効のない場合であろう。他の植物の花粉では，開花日に対してもある程度変性する側板を知られている（佐々木・沢田, 1957）。しかし，厳密な定量実験ではないが，本実験での糖分析の結果は，両親および不稔種花粉も開花倉に，ほほ同量の変異性糖を含んでいることを示している。このことおよび両親・稔稈では発芽孔側板に澱粉粒が集積し配列していること，また密度も高いこと（Table 2:4）から，両親および稔稈でみられる澱粉粒の localization は，澱粉粒の発芽孔の反対側板での分解によってではなく，澱粉粒の発芽孔側板に移行によっておこったものと考えられる。

不稔種花粉は，往々にして，自配および他配ともに発芽しないといわれている（藤枝，1959）。本実験では，人工培地を用いて発芽試験を行なった。

種類花粉の人工発芽を，従来よりもしろく困難とされてきた（山内ら，1964）。したがって，人工培地を用いた発芽試験を行なうには最適の人工培地をうることがきわめて大切である。一般に人工培地に栽培を加えると，花粉発芽の良好なことは古くから知られて（MARTIN, 1913; BRINK, 1924）。山内ら（1954）は，種類花粉の人工
発芽試験で、カタクリ、クズ、または寒天に蔗糖を加えた人工培地を用い、そのうちで、特にカタクリ 5%・蔗
糖 20% 培地において高い発芽率を示している。本実験で
はまず、可溶性澱粉・蔗糖培地を用いて発芽試験を行な
った。山田らの用いたと同様可溶性澱粉 5%・蔗糖 30%
培地では花粉は破壊してしまい、発芽させることができ
なかった。しかしこ可溶性澱粉 5%・蔗糖 30% 培地で
は安定した発芽率を示すことができた（Table 1）。こ
で最適蔗糖濃度が著者の場合と山田らの場合とで相違を
示したが、これが何によるものか明確でない。あるいは
栽培地域、供試品種などによっててもどうのではないかと
も考えられる。
一方、山田ら（1954）が低い発芽率しか示すことができ
なかった寒天・蔗糖培地でも、著者はその物理的形状を
工夫することにより安定した発芽率を示すことができた。
すなわち、寒天・蔗糖培地（1%、20%）を加熱溶解後
たやすく懸濁しながら冷却し、いわゆる寒天膜形成を阻
止した培地をつくることにより成功した（Table 1）。
澱粉・蔗糖培地および寒天・蔗糖培地のいずれを用い
ても両親および稔稲は発芽したが、不稔稲花粉は、著者
の観察した範囲では、全く発芽しなかった（Table 1）。
このことは、不稔稲で飲かせても 10% 以下の結実が
みられることから期待は無かったが、かかる結実のみられる
原因は現在のところ全く不明である。
人工培地を用いた発芽試験では、両親および稔稲とも
に着床後直ちに吸水し、置床 2～4 分の間には、花粉表
面に近い細胞質粒が不規則な運動を欠き、発芽孔の弁
がほとんど。4～10 分の間には、原形質流動がおこり（澱
粉粒の localization は消失し始まる）、ついで発芽突
起が形成される。その後、両親および稔稲ではそのまま管
伸長をおく（澱粉粒の localization は全くみられない
と）。しかし、不稔稲花粉では、発芽突起はまるでなく
破壊ししまい管伸長はおこらない。
pH 6.5、水温 20℃ の蒸溜水に浸漬した場合、両親お
よび稔稲では、浸漬後 2～4 分の間に供試花粉の 60%
近くが、原形質を吐出してしまうが、不稔稲花粉では
10% に満たない（Fig. 5）。このことから推察して、両
親および稔稲では、浸漬後 2～4 分の間に花粉粒内の
吸水が急速に高まるが、不稔稲花粉では、この間の吸水
が緩慢のように考えられる。
著者の一人は、柱頭上の発芽試験を行ない（勝尾、
1959）、両親および稔稲は一定時間後にヨード・ヨードカリ
反応陰性となるが不稔稲はヨード・ヨードカリ反応陽
性である事実をまとめ、両者は澱粉分解酵素活性の程度
に差異があるのではないかと考えた。本実験でも原形質
吐出実験において、不稔稲の原形質吐出が緩慢であるこ
とから、花粉粒内吸水圧を高めると考えられるグルコース
の生成に異常があるのではないかと考え、アミラーゼの
活性度を測定したが差異はみられなかった（Table 2）。
岩波（1956）は、Impatiens Balsamina L. の成熟花
粉はグルコースを多量に含んでいるが、Lilium longi-
florum THUNB. には蔗糖が含まれており、前者は設置後
すぐに発芽するが、後者は 24 時間待たないと発芽しない
ことを報告している。両親および稔稲の成熟花粉には、
マルトースおよびグルコースが含まれており、両親およ
び稔稲が設置後すぐに発芽することは岩波の研究と一致す
る。ただし厳密な定量実験ではないが、不稔稲の成熟花
粉でもほぼ同量のグルコースおよびマルトースが検出さ
れた。このことは、花粉粒が設置後すぐに発芽するための
エネルギー源が、両親・稔稲と不稔稲ともに存在してい
ることを示している。
以上のことから簡単に結論を出すことはできないが、
不稔稲花粉発生過程での多糖類の不足、両親および稔稲
花粉にみられ、不稔稲花粉にみられなかった澱粉粒の
localization と花粉の人工培地での行動の違い、吸水
状態の違いさらにアミラーゼ活性などは、相互に何らか
の関係があるものと考えられる。特に発生過程での多糖
類の意義、澱粉粒の localization は今後の重要な研究課
題と考えられる。
IV. 摘 要
1. 細胞質要因と核内要因の協同作用によってあらわ
れる不稔稲花粉の生理・形態的研究を行なった。
Morphological and histochemical comparisons of pollen were made among the following rice strains: (a) Fujisaka No.5, an improved Japanese variety; (b) a strain of Chinese wild rice, O. sativa f. spontanea; (c) a male-sterile, Fujisaka No.5-type strain with spontanea cytoplasm; (d) a normal spontanea-type strain with Fujisaka No.5 cytoplasm.

The last two of these were made by Katsuo and Mizushima (1958) through nuclear substitution. In microcytes at the tetrad stage polysaccharide content was observed to be less in (c) than in (d), (a), and (b). Localization of starch grains to the polar site of germopore of pollen was recognized in (d), (a), and (b), but not in (c). Translocation of starch grains to the site was confirmed to take place at the time of anther dehiscence in the former three. The pollen of (d), (a), and (b) germinated on artificial culture media, whereas those of (c) did not and puffed out cytoplasm. Majority of the pollen of (d), (a), and (b) puffed out cytoplasm soon after being soaked in distilled water. Occurrence of this plasmodyse was not so remarkable in the case of (c). Pollen of all the strains showed similar amylose activity as well as equal maltose and glucose content.