Varietal Differences in Embryogenic and Regenerative Ability in Microspore Culture of Chinese Cabbage (Brassica rapa L. ssp. pekinensis)

Yasuhiro Kubota, Koji Nakamura, Ken-ichi Hida, and Hiroaki Yokokawa

Summary
Varietal differences in embryogenesis and plant regenerative ability from isolated microspores of Chinese cabbage, Brassica rapa L. ssp. pekinensis, were investigated. There were significant differences (<1%) among the varieties in total embryoid yield and regenerative embryoid yield per 1×10⁶ microspores. Tropical varieties had high embryogenesis and regenerative ability. 'Haifo Early 30 Days' showed the highest embryoid yield and 'Homel' showed a higher efficiency of plant regeneration from microspores. However, domestic Japanese varieties showed very low embryogenesis and plant regeneration ability in microspore culture. Though 'Haifo Early 30 Days' showed a higher embryoid yield than 'Homel', the latter showed more efficient plant regeneration from embryos than the former. There was no correlation between the total embryoid yield and the percentage of embryos with plant regeneration. These results suggest that plant regeneration from embryos is controlled by some genetic factors different from those controlling embryogenesis.

In order to introduce high regenerative ability to domestic Japanese varieties, microspores isolated from the F₁ hybrid of 'Homel'×'Nozaki No. 2' (domestic Japanese variety) were cultured. Doubled haploid lines, which had both high regenerative ability and characteristics comparatively similar to domestic Japanese varieties, could be selected among these regenerated plants. If high regenerative lines with domestic Japanese characteristics are developed, it is expected that the application of microspore culture to practical plant breeding will become easier for the breeding of Chinese cabbage in Japan.

Key Words: Brassica rapa, embryogenesis, haploid, microspore culture, plant regeneration, varietal differences.

Introduction

The haploid method of breeding is useful and effective for genetic fixation because the doubled haploid is theoretically homozygous. Since the successful anther culture of Brassica species was first described by Keller et al. (1975) and Thomas and Wenzel (1975) for B. napus L., this technique has been applied to several other Brassica species (George and Rao 1982, Ockendon 1985, Govil et al. 1986, Arora and Bhojwani 1988, Sato et al. 1989c).

Microspore cultures have several advantages over anther cultures, including the absence of regeneration from somatic tissue and a significant reduction in labor requirement (Swanson et al. 1987). Since haploid plants were first obtained from isolated microspores of B. napus by Lichter (1982), the technique of microspore culture has been studied intensively in order to improve embryoid yield and plant regeneration frequency (Chuang et al. 1988, Fan et al. 1988, Sato et al. 1989b, Takahata and Keller 1991). The information gained from such studies is valuable for rapeseed breeding programs considering the use of haploidy (Siebel and Pauls 1989).

For the application of microspore culture to the practical breeding of Brassica species, often unpredictable and very low embryo yield has been a serious problem. The genotype is thought to be the most important factor affecting embryogenesis of Brassica species (Chuang et al. 1988, Takahata and Keller 1991). For Chinese cabbage (B. rapa L. ssp. pekinensis), which is one of the most important vegetables in Japan, there have been few reports of successful microspore culture (Sato et al. 1989a, Waki et al. 1994). Though there have been some successes in the microspore culture of B. rapa L. (syn. B. campestris L.) (Bailie et al. 1992, Cao et al. 1994, Ferrie et al. 1995), varietal differences in the frequency of plant regeneration from isolated microspores have not been reported. Therefore, it is difficult to apply microspore culture to the practical breeding of Chinese cabbage. In the present study, varietal differences in the embryogenesis ability and plant regeneration from isolated microspores of Chinese cabbage were investigated.

Materials and Methods

First Experiment
Twenty-five varieties of Chinese cabbage were examined (Table 1), including the semi-heading type, cylindrical (Michihili type), ovate type (Li 1981) and tropical type (Saito 1947). The tropical type, which was not reviewed by Li (1981), is cultivated mainly in southern China and Southeast Asia. It has a small round head, and small, thick, glossy and dark green leaves with comparatively narrow midribs. The bolting of tropical varieties is earlier than that of other types. All of the ovate varieties in this experiment were domestic Japanese varieties which had been developed in Japan.
Table 1. Varietal differences in embryo yield and regenerative embryo yield in microspore culture

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type</th>
<th>Origin</th>
<th>Geometric mean of number of embryos</th>
<th>Geometric mean of the number of embryos with regenerated plants</th>
<th>Percentage of embryos with plant regeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homel</td>
<td>TR</td>
<td>AVRDC</td>
<td>25.7 ab&lt;sup&gt;1&lt;/sup&gt;</td>
<td>13.8 a&lt;sup&gt;1&lt;/sup&gt;</td>
<td>54.0</td>
</tr>
<tr>
<td>Changphat Early</td>
<td>TR</td>
<td>AVRDC</td>
<td>6.7 cdef</td>
<td>6.1 ab</td>
<td>91.0</td>
</tr>
<tr>
<td>Kensui</td>
<td>TR</td>
<td>SC</td>
<td>23.4 abc</td>
<td>5.7 abc</td>
<td>24.4</td>
</tr>
<tr>
<td>Hsifa Early 30 Days</td>
<td>TR</td>
<td>AVRDC</td>
<td>52.7 a</td>
<td>4.7 bcd</td>
<td>8.9</td>
</tr>
<tr>
<td>Santo Sai</td>
<td>SH</td>
<td>NIAR</td>
<td>8.2 bcde</td>
<td>4.7 bcd</td>
<td>57.3</td>
</tr>
<tr>
<td>Formosa 45 Days</td>
<td>TR</td>
<td>AVRDC</td>
<td>1.8 efgh</td>
<td>1.8 cde</td>
<td>100.0</td>
</tr>
<tr>
<td>Homel Yangching</td>
<td>TR</td>
<td>AVRDC</td>
<td>15.9 abc</td>
<td>1.0 de</td>
<td>63.3</td>
</tr>
<tr>
<td>Tokyo Takanoko</td>
<td>CY</td>
<td>SC</td>
<td>11.3 bcd</td>
<td>1.0 de</td>
<td>8.8</td>
</tr>
<tr>
<td>Linzijing</td>
<td>CY</td>
<td>China</td>
<td>4.5 cdefg</td>
<td>1.0 de</td>
<td>22.2</td>
</tr>
<tr>
<td>Hsiaosheng 35 Days</td>
<td>TR</td>
<td>AVRDC</td>
<td>1.8 fgh</td>
<td>0.4 de</td>
<td>22.2</td>
</tr>
<tr>
<td>Muso</td>
<td>OV</td>
<td>SC</td>
<td>0.7 gh</td>
<td>0.4 de</td>
<td>57.1</td>
</tr>
<tr>
<td>Pikaichi</td>
<td>TR</td>
<td>SC</td>
<td>4.0 defgh</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Nozaki No.2</td>
<td>OV</td>
<td>SC</td>
<td>2.2 defgh</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Chihili 70</td>
<td>CY</td>
<td>SC</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Qiogmege</td>
<td>CY</td>
<td>China</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Chosen</td>
<td>OV</td>
<td>NIAR</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Hattukaure</td>
<td>OV</td>
<td>SC</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Kaga</td>
<td>OV</td>
<td>NIAR</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Matsushima New No.2</td>
<td>OV</td>
<td>NIVOT</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>New Riso</td>
<td>OV</td>
<td>SC</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Osho</td>
<td>OV</td>
<td>SC</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Sinosyama Chitose</td>
<td>OV</td>
<td>NIAR</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Kashin</td>
<td>SH</td>
<td>NIAR</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Kenryu</td>
<td>TR</td>
<td>SC</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
<tr>
<td>Taihun 40 Days</td>
<td>TR</td>
<td>AVRDC</td>
<td>0.0 h</td>
<td>0.0 e</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<sup>1</sup> Two plants for each variety were examined. Before taking the logarithm of the number of embryos per 1 × 10<sup>6</sup> microspores, the number of embryos was increased by 1 in each flower bud class and then statistical analyses were performed. Therefore these geometric means were 1 less than the calculated ones.


<sup>3</sup> Introduction from China, Asian Vegetable Research (AVRDC) in Taiwan, National Institute of Agrobiological Resources (NIAR) in Japan, National Research Institute of Vegetables, Ornamental Plants and Tea (NIVOT) and seed companies (SC) in Japan.

<sup>4</sup> Values in the same column following the same letter are not significantly different at the 1% level, according to LSD.

These varieties have a tight and ovate head, and comparatively rough, thick and green leaves with wide white midribs.

Seeds of the donor plants were sown in a greenhouse in early February, where the minimum temperature was kept above 10 °C. After 2 weeks, they were transplanted into a glasshouse without heating, and flowering occurred during March and April. Two plants for each variety were used in the microspore culture.

The microspore culture was carried out according to the method of Sato et al. (1989b) with modifications. Young flower buds were sampled from donor plants and classified, according to bud-length into four groups: 2.0 to 2.3, 2.4 to 2.7, 2.8 to 3.1 and 3.2 to 3.5 mm. Isolated microspores from each bud-length group were cultured separately, because the microspore development stage influences embryogenesis (Fan et al. 1988). The buds were sterilized in sodium hypochlorite solution containing 2 % active chlorine for 15 min. They were washed with sterilized-distilled water 4 times and gently pested in BM-10 medium (Table 2), using a mortar 8 cm in diameter and a pestle 13 cm long. BM-10 medium, which was a modified B medium (Sato et al. 1989b), was adjusted to pH 6.0 and filter-sterilized. The suspension was filtered through a 63 μm stainless steel mesh and collected in a centrifuge tube. BM-10 medium was added and then the mixture was centrifuged at 120 × g for 3 min. The centrifuging and washing steps were repeated 3 times, then the microspores were resuspended in BM-10 medium at a 1 × 10<sup>5</sup> microspores/mL. Two milliliters of this suspension was plated into each of three 60 × 15 mm sterilized plastic petri dishes. These were incubated at 33 °C in darkness for 24 hr and then maintained at 22 °C in darkness.

After 3 weeks of culture, the number of embryos at each developmental stage was counted. The embryos...
which grew into the torpedo or cotyledonal stage were transferred onto half-strength MS medium containing 1 % sucrose and 0.5 % Gellan Gum (Wako Pure Chemical Industries Ltd. Osaka) and incubated at 22 °C with a 16 hr light/8 hr dark photoperiod of cool white illumination at 50 μmol/m²s. After 3 weeks, they were transferred onto half-strength MS medium with 1 % sucrose and 0.8 % agar. Regenerated plants were grown in vermiculite for about 2 weeks before transfer to soil. After 10 weeks of initiation culture, the number of embryos with regenerated shoots, which grew more than 2 cm, was recorded.

The mean numbers of total embryos and embryos with regenerated shoots were calculated for each donor plant as follows. Among four groups classified by flower bud-length, two groups showing more regenerative embryoid yield than the other two were selected, and then the geometric mean was calculated. Before taking the logarithm of the number of embryos, the number of embryos was increased by 1 in each group. Two plants for each variety were examined and each donor plant was examined twice. Then the geometric mean was calculated for each variety. After these mean values had been transformed to logarithms, statistical analysis was performed.

**Second experiment**

Two breeding lines 'A9302' and 'A9303' with domestic Japanese characters and high regenerative ability were produced. Isolated microspores from the hybrid of 'Homem'x'Nozaki No. 2' (domestic Japanese variety) were cultured and 50 regenerated plants were obtained. Ten out of these 50 plants were selected for high frequency of plant regeneration, and 8 of the 10 were selected for seed production by bud pollination. Two lines, 'A9302' and 'A9303', were selected among these 8 selfed lines for their close similarity to the Japanese varieties. To compare with these two lines, eleven Japanese F₁ hybrid varieties, 'Homem' (tropical type) introduced from the Asian Vegetable Research and Development Center (AVRDC), and two Chinese cabbage parental lines (CCPL), 'CCPL No. 1' and 'CCPL No. 4', which are resistant to clubroot disease, were used (Table 3).

Seeds of donor plants were sown in a growth chamber under a 16 hr photoperiod of 200 μmol/m²s with mercury-vapor and sunbeam lamps and a day/night temperature of 20 °C/15 °C. After 2 weeks they were vernalized in a cold room at 4 °C and under a 16 hr photoperiod of 20 μmol/m²s for 3 weeks. These plants were then transferred to the growth chamber as described above. Microspore culture was carried out as in the first experiment.

### Table 2. Composition of the initiation medium (BM-10)<sup>11</sup> for microspore culture in Brassica rapa L.

<table>
<thead>
<tr>
<th>Compound</th>
<th>mg/l</th>
<th>Compound</th>
<th>mg/l</th>
</tr>
</thead>
<tbody>
<tr>
<td>KNO&lt;sub&gt;3&lt;/sub&gt;</td>
<td>62.5</td>
<td>myo-Inositol</td>
<td>100</td>
</tr>
<tr>
<td>KH&lt;sub&gt;2&lt;/sub&gt;PO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>62.5</td>
<td>Nicotinic acid</td>
<td>5</td>
</tr>
<tr>
<td>Ca (NO&lt;sub&gt;3&lt;/sub&gt;)&lt;sub&gt;2&lt;/sub&gt; · 4H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>250</td>
<td>Glycine</td>
<td>2</td>
</tr>
<tr>
<td>MgSO&lt;sub&gt;4&lt;/sub&gt; · 7H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>62.5</td>
<td>Pyridoxine HCl</td>
<td>0.5</td>
</tr>
<tr>
<td>FeSO&lt;sub&gt;4&lt;/sub&gt; · 7H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>13.9</td>
<td>Thiamin HCl</td>
<td>0.5</td>
</tr>
<tr>
<td>Na&lt;sub&gt;2&lt;/sub&gt;EDTA</td>
<td>18.65</td>
<td>Biotin</td>
<td>0.05</td>
</tr>
<tr>
<td>H&lt;sub&gt;2&lt;/sub&gt;BO&lt;sub&gt;4&lt;/sub&gt;</td>
<td>6.2</td>
<td>Folic acid</td>
<td>0.5</td>
</tr>
<tr>
<td>MnSO&lt;sub&gt;4&lt;/sub&gt; · 4H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>22.3</td>
<td>Glutathione</td>
<td>30</td>
</tr>
<tr>
<td>ZnSO&lt;sub&gt;4&lt;/sub&gt; · 7H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>8.6</td>
<td>L-Glutamine</td>
<td>800</td>
</tr>
<tr>
<td>KI</td>
<td>0.83</td>
<td>L-Serine</td>
<td>100</td>
</tr>
<tr>
<td>Na&lt;sub&gt;2&lt;/sub&gt;MoO&lt;sub&gt;4&lt;/sub&gt; · 2H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>0.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CuSO&lt;sub&gt;4&lt;/sub&gt; · 5H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>0.025</td>
<td>Sucrose</td>
<td>100,000</td>
</tr>
<tr>
<td>CsCl · 6H&lt;sub&gt;2&lt;/sub&gt;O</td>
<td>0.025</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<sup>11</sup> BM-10 : The concentration of FeSO<sub>4</sub> · 7H<sub>2</sub>O, Na<sub>2</sub>EDTA and sucrose are modified and the plant growth regulators are omitted from Sato's medium (1988b). The pH of the medium was adjusted to 6.0 with KOH and filter-sterilized.

### Table 3. Varietal differences in embryo yield and regenerative embryoid yield in microspore culture<sup>4</sup>7

<table>
<thead>
<tr>
<th>Variety</th>
<th>Type&lt;sup&gt;4&lt;/sup&gt;</th>
<th>Origin&lt;sup&gt;5&lt;/sup&gt;</th>
<th>Geometric mean of number of embryos</th>
<th>Geometric mean of the number of embryos with regenerated plants</th>
<th>Percentage of embryos with plant regeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>A9302&lt;sup&gt;4&lt;/sup&gt;</td>
<td>OV</td>
<td>NIVOT</td>
<td>101.1 a&lt;sup&gt;6&lt;/sup&gt;</td>
<td>44.7 a&lt;sup&gt;5&lt;/sup&gt;</td>
<td>44.2</td>
</tr>
<tr>
<td>A9303&lt;sup&gt;4&lt;/sup&gt;</td>
<td>OV</td>
<td>NIVOT</td>
<td>106.1 a</td>
<td>44.2 a</td>
<td>41.7</td>
</tr>
<tr>
<td>Homei</td>
<td>TR</td>
<td>AVRDC</td>
<td>43.3 a</td>
<td>22.2 a</td>
<td>51.4</td>
</tr>
<tr>
<td>CCPL No.4&lt;sup&gt;6&lt;/sup&gt;</td>
<td>TR</td>
<td>NIVOT</td>
<td>3.2 b</td>
<td>1.4 b</td>
<td>43.8</td>
</tr>
<tr>
<td>Orange Queen</td>
<td>OV</td>
<td>SC</td>
<td>1.4 bc</td>
<td>1.4 b</td>
<td>100.0</td>
</tr>
<tr>
<td>Masa</td>
<td>OV</td>
<td>SC</td>
<td>1.0 bc</td>
<td>1.0 bc</td>
<td>100.0</td>
</tr>
<tr>
<td>Ulage 70</td>
<td>OV</td>
<td>SC</td>
<td>2.7 b</td>
<td>0.7 bc</td>
<td>25.9</td>
</tr>
<tr>
<td>Rynotoku</td>
<td>OV</td>
<td>SC</td>
<td>1.4 bc</td>
<td>0.4 bc</td>
<td>28.6</td>
</tr>
<tr>
<td>CCPL No.1&lt;sup&gt;6&lt;/sup&gt;</td>
<td>OV</td>
<td>NIVOT</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>Daifuku 75</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>Horai No.3</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>Kanko</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>Kogetsu 70</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>Kokai 65</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>Sakae</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
<tr>
<td>W-1116</td>
<td>OV</td>
<td>SC</td>
<td>0.0 c</td>
<td>0.0 c</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<sup>4</sup> Two plants for each variety were examined. Before taking the logarithm of the number of embryos per 1 x 10<sup>6</sup> microspores, the number of embryos was increased by 1 in each flower bud class and then statistical analyses were performed. Therefore these geometric means were 1 less than the calculated ones.

<sup>5</sup> OV : ovate and TR : tropical type.

<sup>6</sup> Introduction from Asian Vegetable Research (AVRDC) in Taiwan, National Research Institute of Vegetables, Ornamental Plants and Tea (NIVOT) and seed companies (SC) in Japan.

<sup>7</sup> Breeding line from a cross of 'Homem' and 'Nozaki No.2' selected for embryogenic ability.

<sup>8</sup> Values in the same column following the same letter are not significantly different at the 1% level, according to LSD.

<sup>9</sup> Chinese cabbage parental line (CCPL).
genotypes (data not shown).

First experiment

'Hisifu Early 30 Days' and 'Changpuh Early' showed differing efficiency of embryogenesis between donors. The better donor plant had about five times as many embryos as the poorer one for 'Hisifu Early 30 Days' and about three times as many for 'Changpuh Early'. Other accessions showed relatively stable efficiency between donors (data not shown).

There were significant differences (<1%) in the total embryoid yield and the regenerative embryoid yield among the varieties (Table 1). Thirteen out of 25 varieties formed embryoids in microspore culture. Embryogenesis from microspores was similar among these 13 varieties. After 2 to 3 days of culture, the microspores swelled and then in some the first nuclear divisions were observed. Globular embryoids were formed after 7 to 10 days of culture. The embryoids reached the torpedo and cotyledonary stages after 2 to 3 weeks.

'Hisifu Early 30 Days' showed the highest embryoid yield, followed by 'Homei' introduced from AVRDC and 'Kensui' (Table 1). 'Kensui' had the same characteristics as the varieties introduced from AVRDC. In 8 out of 10 tropical varieties, embryogenesis was frequently observed, and some of them showed a high embryoid yield. Among other types, 'Tokyo Takenoko' (cylindrical type) showed the highest embryoid yield, followed by 'Santo Sai' (semi-heading type). In comparison, the domestic Japanese varieties showed very low embryoid yield.

In 'Hisifu Early 30 Days', which showed the highest embryoid yield in this experiment, 151 embryoids per 1 × 10^5 microspores were formed in the 2.8 to 3.1 mm bud-length group (data not shown). However, the frequency of plant regeneration from microspores was low (Table 1). On the other hand, 'Homei', 'Changpuh Early' and 'Kensui' showed a higher frequency of plant regeneration from microspores.

The correlation coefficient between the number of total embryoids and the percentage of embryoids showing plant regeneration was r = −0.24.

Second experiment

1. Breeding process of 'A9302' and 'A9303'

Isolated microspores from the hybrid of 'Homei' × 'Nozaki No. 2' (domestic Japanese variety) were cultured and this hybrid had a higher embryogenesis and regenerative ability than those of 'Homei' (Kuginuki et al. 1991) and 50 regenerated plants were obtained. These 50 plants exhibited differences in embryoid yield ranging from 116 embryoids per 1 × 10^5 microspores to 0 and regenerative embryoid yield ranging from 51 embryoids to 0. Nine plants showed no embryoid in these 50 regenerated plants. Ten plants which showed more regenerative embryoids than 'Homei' were selected out of the 50 plants. Out of these 10 plants, 8 plants which had an ability of seed production similar to 'Nozaki No. 2' by bud pollination were selected (data not shown). Two lines 'A9302' and 'A9303', which had wider midrib and later bolting than the other 8 selfed lines, were selected.

2. Embryogenesis and regeneration ability

'Homei' showed varying efficiency of embryogenesis among donors (data not shown). The better donor plant had about three times as many embryos as the poorer one. Other accessions showed relatively stable efficiency among donors.

There were significant differences (<1%) in embryoid yield and regenerative embryoid yield among the varieties (Table 3). Eight varieties out of 16 formed embryoids. 'A9302' and 'A9303' showed the largest number of total embryoids and embryoids with regenerated shoots (Table 3). In this experiment, the highest embryoid yield was 227 per 1 × 10^5 microspores of 'A9302' in the 2.4 to 2.7 mm bud-length group and the yield of 'A9303' in the 2.4 to 2.7 mm group was 201. These numbers were higher than those of 'Homei', which had the higher embryogenic ability between the parents. Compared with these breeding lines, the Japanese F1 hybrid varieties had low frequencies of both embryogenesis and plant regeneration.

The correlation coefficient between the number of total embryoids and the percentage of embryoids showing plant regeneration was r = −0.27.

Although plant growth conditions differed between Experiments 1 and 2, some varieties of the tropical type were found to have higher embryogenic ability and Japanese varieties showed the lower embryogenesis efficiency in both experiments (Tables 1 and 3).

Discussion

The embryoid yield from isolated microspores differed markedly among Chinese cabbage varieties (Tables 1 and 3). Such an influence of donor plant genotype on embryogenesis has been reported in B. napus (Chuong et al. 1988) and B.oleracea (Takahata and Keller 1991). Sato et al. (1989c) reported that the 'koshin type' (a tropical type) had an extremely high embryogenic ability, and Japanese varieties of 'Matsushima New No. 2' and 'Nozaki No. 2' had the lowest embryogenesis efficiency among Chinese cabbage varieties in anther culture. Our results for microspore culture agreed with their results for anther culture.

The highest embryoid yield reported so far for Brassica vegetables has been 530 per 1 × 10^5 microspores of broccoli (Takahata and Keller 1991), 86 for cabbage (Kuginuki et al. 1993) and 250 for Chinese cabbage (Sato et al. 1989b). In the present experiment, the highest embryoid yield was 227 in 'A9302' and 201 in 'A9303' (data not shown). These breeding lines were therefore considered to have the high embryogenic ability among Brassica vegetables.
This is the first study of varietal differences in regenerative ability from microspore-derived embryos of *Brassica* vegetables. The frequency of plant regeneration also differed significantly among the varieties of Chinese cabbage in microspore culture (Tables 1 and 3). These results showed that the efficiency of plant regeneration is influenced by genotype. Although ‘Hitajima Early 30 Days’ showed the highest embryoid yield in the first experiment, the efficiency of plant regeneration from embryoids was low (Table 1). In comparison, ‘Homei’ showed a higher efficiency of plant regeneration. The low correlation coefficient between the number of total embryoids and the percentage of embryoids showing plant regeneration indicated that plant regeneration from embryoids was controlled by genetic factors different from those controlling embryogenesis. Although the frequency of plant regeneration from embryoids has been improved in some *Brassica* species, it is still low (Keller *et al.*, 1987, Takahata and Keller 1991). Therefore, tissue masses abnormally developed from primary embryoids often need to be subcultured many times in order to induce normal shoots from microspore-derived embryoids. These drawbacks may override the general effectiveness of the haploid system in terms of time and labor in breeding programs (Chung *et al.*, 1988). On the other hand, ‘A9302’ and ‘A9303’ induced few abnormal embryoids and showed a high efficiency of plant regeneration without subculturing many times. Such high regenerative ability was considered to be useful in the application of microspore culture to practical plant breeding.

The domestic Japanese varieties exhibited low abilities of both embryogenesis and plant regeneration in microspore culture. This limited the application of microspore culture to practical breeding. Therefore, we tried to develop breeding lines which have agronomic characters similar to domestic Japanese varieties and high regenerative ability similar to tropical ones. Some reports have indicated that the F₁ has a high ability of androgenic embryogenesis in *B. rapa* (Siebel and Pauls 1989) and *B. rapa* (Kuginuki *et al.*, 1991). The results for the hybrid ‘Homei’×‘Nozaki No. 2’ agree with previous studies. Hence it is easy to obtain many regenerated plants from the microspores of the hybrids.

Ten out of the 50 regenerated plants showed a higher number of embryoids with plant regeneration than ‘Homei’, which has the higher embryogenic ability between the parents. ‘A9302’ and ‘A9303’ were selected out of these 10 plants for their comparatively desirable characteristics and high seed production, and showed higher regenerative ability from microspores than ‘Homei’ (Table 3). From this result, it is suggested that ‘Homei’ had the variation of embryogenic and regenerative ability derived from microspores and the higher ability was fixed in ‘A9302’ and ‘A9303’.

We are continuing to develop breeding lines which have similar characteristics to domestic Japanese varieties without losing their high regenerative ability. Judging from the correlation coefficient between the number of regenerative embryoids and the number of days from sowing to bolting (*r* = −0.23), or the width of midrib in the largest leaf (*r* = −0.27) in the 50 regenerated plants, there is probably no marked genetic linkage of characteristics of domestic Japanese varieties and high regenerative ability. Therefore, it is thought that high regenerative ability can be introduced into varieties with domestic Japanese characteristics. As these lines are developed, it is expected that the application of microspore culture will become easier for the practical breeding of Japanese varieties of Chinese cabbage.

**Acknowledgments**

This work was supported by the Integrated Research Program for the Use of Procedures for Plant Breeding of the Ministry of Agriculture, Forestry and Fisheries of Japan, and by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan. We would like to thank Dr. H. Fukushima for helpful discussions, and Ms. M. Matsuoka and Ms. Y. Yoshida for technical assistance.

**Literature Cited**


