水害進展過程における
住民対応行動の形成に関する研究

及川 康１・児玉 眞２・片田敏孝３

１正会員 博（工） 高松工業高等専門学校助手 設設環境工学科（〒761-8058 香川県高松市勤使町355）
oikawa@takamatsu-ct.ac.jp
２学生会員 修士（工） 群馬大学大学院 工学研究科（〒376-8515 群馬県桐生市天神町1-5-1）
３正会員 工博 群馬大学助教授 工学部建設工学科（〒376-8515 群馬県桐生市天神町1-5-1）

本研究では、水害の進展過程において住民が周辺状況の変化を察知し、種々の災害情報を入手する中で、それをどのように受け止め、要因を結びつけるか、さらには、どのように対応行動に移すのか、という一連の心理的過程と対応行動の関係に着目し、その特性を時間的かつ定量的に把握した。これらの検討では、水害時の対応行動に関する発表の発信は直接的に住民の対応行動の意思決定に影響を与え、悪意を検討した情報は家財保全行動の促す効果を有すること。また、それら対応行動が発表される以前に提供される災害情報を、早期の危機意識の構成を促すことなどを定量的に示した。たとえ、洪水ハザードマップの公表等による事前の災害教育の実施により、住民が自宅の潜在的浸水可能性を正しく認識し、対応行動に反映させる効果を示した。

Key Words: determination process of inhabitants' consciousness and behavior, disaster information, changes of circumferential situation, evacuation order, flood hazard map

1. はじめに

水害の進展過程において、時々刻々と風云雨などの気象変化が起こることに加え、テレビ・ラジオなどの気象情報報道も、水害の進展に伴って次第に具体的性をもつた緊迫した内容へと変化していく。こうした状況変化や報道内容の变化に加えて、自治体から発令される避難命令や避難指示などの情報を判断材料として、住民は種々の対応行動を実施していると考えられる。この観点から、水害の発生が予想される地域の住民に対しては、まず、これらの情報が迅速かつ正確に伝達できる環境を整備することが重要となる。しかし、各地の水害発生時における住民対応行動の実績を観察しても明らかに、住民の変化を察知したり情報を入手したとしても、必ずしも全ての住民が速やかに対応行動を行うとは限らないのが実情である。

そこで、速やかな対応行動が実施されにくい要因を住民の心理的な背後から捉え直してみれば、水害進展過程において、自らが求められている状況が危機的状況にある、もしくは求められる可能性が高いとの危機意識が住民に形成されないのであれば、いずれ平等と同様状況認識であり、このような住民においては水害に対する対応行動を実施する動機は生じない。すなわち、周辺状況の変化や災害情報を、住民がどのように受け止め、危機意識の形成に結びつけるか、さらには、そこで形成された危機意識に基づいて生じて対応行動に移すのかが問題となる。しかし、同じ情報を受ける、同じ状況に置かれたすべての住民が、同じタイミングで対応行動の実施に至ることは限らず、その差異は、平時にあらかじめ形成されている災害に対する危険度意識のありように起因するところが大きいと考えられる。

本研究では、このような水害進展過程における周辺状況や災害情報内容の時間的変化との関係のなかで、住民の危機意識の形成や対応行動の実施に至る一連のプロセスを定量的に明らかにすることを目的としている。また、主に水害発生時情報伝達方法や、平時からの洪水ハザードマップ配布等による災害教育などの乗算に着目して、住民の対応行動に対するその効果を把握することを目的とする。なお、分析に際して、平成14年台風6号（以下、台風0206号）接近時における福島県郡山市を事例としてとりあげ、そこでの実態調査の結果をもとに検討を行う。
2. 本研究の位置づけと分析フレーム

従来にも、災害情報や住民対応行動に着目し研究が多く行われている。例えば、仮想的な状況想定のもとで、奥村らやJohn C. C. et al.や及び片山らは、災害情報と住民行動との関係を取り扱っている。ここでは、避難勧告や避難行動と災害情報との関連性に着目し、避難勧告の有無がその「オカルタリッキー効果」を引き起こす可能性があることや、災害情報の有無が、避難行動の実施を遅らせる可能性があることを指摘されている。また、早川・今村は、津波発生における避難行動の開始モデルの構築を試みているが、これは地域毎に集計された避難率を予測するモデルであるため、住民個々の行動特性を把握したものではない。これら文献4）～7）では、いずれも統計的手法により住民の避難行動の意思決定モデルの構築を試みているが、予測対象は行動結果としての避難行動であり、本研究では着目しているような水害進展過程に応じた住民行動の変動を検討したものではない。

また、矢部・加賀見は、こうした水害の進展過程における避難行動の変動に着目したプロトコル分析を行っており、池田らは、緊急時における人間の情報処理の概念モデルを提示し、状況の再定義と呼ばれる人間の心理的背景が具体的な災害対応行動の頻度に重要な役割を果たすとしている。しかし、これらの研究では定性的な考察が主となっている。また、西原らや上杉らは、氾濫の開始から避難行動の開始に至るまでの一連の流れを記述するシミュレーションモデルの構築を試みている。このようなシミュレーションモデルでは、住民の対応行動は避難行動に限定されており、また、情報の形成に関する実態を反映したものはなっていない。

これら一連の災害情報や住民対応行動に着目した研究では、各観点からそれぞれ有益な知見を得ることができるものの、本研究のように、水害の進展過程に応じた周辺状況の変化や災害情報の入力、住民情報の形成と対応行動の実施に至る一連のプロセスを時間系列かつ定量化的に把握することを試みたものではない。\

一方、片山らは、このようなる水害進展過程における住民の心理変化の過程では、仮に情報取得態度（住民が情報を積極的に行き来するようとする姿勢）が着目して、その概念構築を行っている。すなわち、住民が積極的である災害情報の取得をしようとする行動を、必然的に、様々な情報入手タイミングが早まるとともに情報入手量が増加し、その結果としての危機意識の形成が、さらなる情報取得行動や対応行動の実施を促すという循環構造を存在を主張している。それに対して本研究では、住民が入手した情報が、危機意識や対応行動の形成に及ぼす影響をより詳細かつ定量的に把握するとともに、様々な災害情報関連施策の住民の対応行動に与える効果を分析することを意図している。

本研究では、このような認識のもとで、水害の進展に伴う時間軸上での解析を基本とし、事例として取り上げる台風2006号接近時における都民の危機意識や対応行動の形成要因を、現地状況の変化や災害情報の入力の関係の中で定量的に把握する。本稿では、分析に先立ち、第3章で、対象地域である台風2006号接近時における都民状況、ならびに調査概要について述べる。第4章では、まず、水害の進展と住民の情報入力や現地状況の変動ならびに危機意識・対応行動の変化実態の基本的な特性について把握する。つづく第5章では、これらの調査結果を用いて、入力した様々な災害情報を住民個々がどのように危機意識の形成にむすびつけていったのかについての影響構造を、第6章では、前章での結果を受けて、危機意識等のありが住民の対応行動実施にどの様にむすびついてきたのかを影響構造を、それぞれ住民の判断から危機意識との関連のモデルを構築し、統計的に有意な関係を探索することにより、水害進展過程における住民の危機意識や対応行動の変化に関する構造を検討する。第7章では、これらのモデルを用いて、種々の状況想定の下での危機意識・対応行動の変化を推定するため、避難情報や洪水ハザードマップなどの諸条件がもたらす種々の効果について分析を行う。最後に第8章では、本論文の総括ならびに今後の検討課題について述べる。

3. 分析対象地域と調査の概要

（1）台風2006号水害時の大東市（2006年7月10日未明の台風2006号接近時）このような水害進展過程における住民の心理変化の過程については、特に情報取得態度（住民が情報を積極的に行き来する傾向）が着目して、その概念構築を行っている。すなわち、住民が積極的である災害情報の取得をしようとする行動を、必然的に、様々な情報入力タイミングが早まるとともに情報入力量が増加し、その結果としての危機意識の形成が、さらなる情報取得行動や対応行動の実施を促すという循環構造を存在を主張している。それに対して本研究では、住民が入手した情報が、危機意識や対応行動の形成に及ぼす影響をより詳細かつ定量的に把握するとともに、様々な災害情報関連施策の住民の対応行動に与える効果を分析することがを意図している。

本研究では、以上のようないめりの研究のもとで、水害の進展に伴う時間軸上の解析を基本とし、事例として取り上げる台風2006号接近時における都民の危機意識や対応行動の形成要因を、現地状況の変化や災害情報の入力の関係の中で定量的に把握する。本稿では、分析に先立ち、第3章で、対象地域である台風2006号接近時における都民状況、ならびに調査概要について述べる。第4章では、まず、水害の進展と住民の情報入力や現地状況の変動ならびに危機意識・対応行動の変化実態の基本的な特性について把握する。つづく第5章では、これらの調査結果を用いて、入力した様々な災害情報を住民個々がどのように危機意識の形成にむすびつけていったのかについての影響構造を、第6章では、前章での結果を受けて、危機意識等のありが住民の対応行動実施にどの様にむすびついてきたのかを影響構造を、それぞれ住民の判断から危機意識との関連のモデルを構築し、統計的に有意な関係を探索することにより、水害進展過程における住民の危機意識や対応行動の変化に関する構造を検討する。第7章では、これらのモデルを用いて、種々の状況想定の下での危機意識・対応行動の変化を推定するため、避難情報や洪水ハザードマップなどの諸条件がもたらす種々の効果について分析を行う。最後に第8章では、本論文の総括ならびに今後の検討課題について述べる。

（1）台風2006号水害時の大東市（2006年7月10日未明の台風2006号接近時）大東市は、水害時の大東市（2006年7月10日未明の台風2006号接近時）大東市は、都民の心理変化の過程については、特に情報取得態度（住民が情報を積極的に行き来する傾向）が着目して、その概念構築を行っている。すなわち、住民が積極的である災害情報の取得をしようとする行動を、必然的に、様々な情報入力タイミングが早まるとともに情報入力量が増加し、その結果としての危機意識の形成が、さらなる情報取得行動や対応行動の実施を促すという循環構造を存在を主張している。それに対して本研究では、住民が入手した情報が、危機意識や対応行動の形成に及ぼす影響をより詳細かつ定量的に把握するとともに、様々な災害情報関連施策の住民の対応行動に与える効果を分析することがを意図している。

本研究では、以上のようないめりの研究のもとで、水害の進展に伴う時間軸上の解析を基本とし、事例として取り上げる台風2006号接近時における都民の危機意識や対応行動の形成要因を、現地状況の変化や災害情報の入力の関係の中で定量的に把握する。本稿では、分析に先立ち、第3章で、対象地域である台風2006号接近時における都民状況、ならびに調査概要について述べる。第4章では、まず、水害の進展と住民の情報入力や現地状況の変動ならびに危機意識・対応行動の変化実態の基本的な特性について把握する。つづく第5章では、これらの調査結果を用いて、入力した様々な災害情報を住民個々がどのように危機意識の形成にむすびつけていったのかについての影響構造を、第6章では、前章での結果を受けて、危機意識等のありが住民の対応行動実施にどの様にむすびついてきたのかを影響構造を、それぞれ住民の判断から危機意識との関連のモデルを構築し、統計的に有意な関係を探索することにより、水害進展過程における住民の危機意識や対応行動の変化に関する構造を検討する。第7章では、これらのモデルを用いて、種々の状況想定の下での危機意識・対応行動の変化を推定するため、避難情報や洪水ハザードマップなどの諸条件がもたらす種々の効果について分析を行う。最後に第8章では、本論文の総括ならびに今後の検討課題について述べる。
表）において浸水が予想されている地域の約24,600世帯65,000人に対して発令された。避難情報の発令に関しては、都築市では、平成12年3月に発令後の洪水ハザードマップの改訂作業のなかで河川堤防の水位に基づいた発令基準を設けており、この水害では、避難準備・勧告・指示はおわね市基準どおりに発令された。

（2）調査実施概要

以上のような状況のなかで、住民の災害情報取得や避難意識、対応行動の状況を把握するために、表1にその実施概要を示す住民アンケート調査を実施した。本調査は、この水害による浸水被害地区およびその周辺を対象地域として選定している。これらはすべて改訂版都築市洪水ハザードマップ上で浸水が予想されている地域にあり、台風0206号による水害時に避難勧告・指示が発令された地域である。すなわち、この洪水ハザードマップに基づくならば、調査対象の全ての回答者は、潜在的に浸水の可能性がある地域の居住者である。なお、調査票の配布方法は教官・学生による訪問配布であり、対象者の抽出はエリアサンプルリングによる。

本研究に関わる主な調査項目としては、避難準備・勧告・指示といった一連の避難情報のほか、それらの発令前の段階で住民が入手可能な種々の災害情報について、その取得時点を質問している。このほかに、各情報の取得時点における回答者の危機意識や対応行動の状態などを調査している。

4. 水害進展過程における住民の情報取得ならびに危機意識・対応行動の変遷

本章ではまず、台風0206号接近時における都築市での水害進展と、住民の情報入力状況ならびに危機意識・対応行動の変遷との関連性について、その基本的特徴を把握する。

図1-30は、台風0206号の接近10日から11日に至る期間のもので、住民の情報取得に関する回答を示したものである。調査では、図中の凡例のような項目について把握しており、これらの情報取得率について時間経過にともなう累積で示している。このうち、水害情報の取得についてみてみると、避難準備の取得率は最終的に40%にも達しており、避難勧告や避難指示についても60%程度の取得率ととまっている。一方、各地の被災状況などその他の項目については、10日午前中の段階で、既に入手（もしくは認知）をもつ住民が存在しており、その後の情報が増加している。避難準備が発表された11日午前3時の時点では75～80%近くに達している。

<table>
<thead>
<tr>
<th>調査実施概要①</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査期間</td>
</tr>
<tr>
<td>調査地域</td>
</tr>
<tr>
<td>調査方法</td>
</tr>
<tr>
<td>配布数</td>
</tr>
<tr>
<td>回収数</td>
</tr>
</tbody>
</table>
このような状況推測のなかで、回答者の危機意識の変選状況を示したものが図-2である。調査では、危機意識の状態を把握するために質問として、「台風の進路がこのまま行うと都市部に影響が及ぶかと思われる時、災害を意識し始めた時、「災害の発生を明確に意識した時」をそれぞれ把握している。これらの質問項目によって把握される意識状態には顕著性がありと考えられるので、ここでは、その回答をそれぞれ累積した各時点での構成比で示している。

これにより、10日午前の段階ではほとんどの回答者が「①平常（何ら災害を意識していない）」の状態であるのに対して、避難情報が発令された11日早朝付近には約6割の回答者が「③災害発生を明確に意識した状態」となり、時間の経過と共に徐々に災害発生を認識する意識状態へと変化していく心理状態が確認できる。このような危機意識の変化は、図-10に示すような様々な情報源が複数となっていることが推測され、それらは、避難情報が発令された直接付近から緊急避難の上昇傾向がそれ以前のものと異なっていることや、避難情報が発令される前にいまだ、各地の被害状況などの避難情報の取得状況と連動して変化している様子からも伺える。一方、図-12については、回答者の対応行動の実施状況を示している。ここで、情報収集行動のみと記されているカテゴリーは、具体的な災害対応行動は行わずに情報収集行動のみを行っている状態を示す。この情報取得行動は、具体的な対応行動実施の動機付けを形成する以前の段階として、災害発生の可能性を明確に判断できるだけの判断材料が不足している場合に、その判断に十分なだけ的情報を積極的に得ようとしない動機で行われる行動と考えられる。この集計結果をみると明らかのように、このような情報取得行動は、家財保全行動や避難行動といった具体的な行動が行われる前の段階において、広く実施されている様子が知られる。それに加え、回答者の対応行動の実施には、危機意識の状態との強い連関性が伺える。

そこで、これらのクロス集計を行った結果が図-2である。これによると、「①平常の意識状態にある場合には、住民はほとんど対応行動を行っておらず、情報取得行動を含めて何らかの行動を行う意識状態としては、平常以外（少からず災害発生を意識している状態：②③④）であることかかった。特に、具体的な対応行動を行う割合が高いのは「災害発生を明確に意識」した状態の住民であり、情報取得行動については、①平常発生を明確に意識」した状態と①平常との間の状態において多く行われる傾向があることが確認される。

以上のように、水害観に対する住民の対応行動のあり方は、各時点における危機意識の状態、さらには種々の情報源の状況と密接に関係していることが把握された。以降では、これらの結果をもとに、住民の危機意識形成モデル、ならびに、住民の対応行動形成モデルの構築を行い、周辺状況の変化や種々の情報源がもたらす影響の構造を検討する。

5. 住民の危機意識の形成要因

一般に、災害発生時およびその発生前の段階では、避難情報のみならず周辺状況の変化などの種々の情報が存在しており、台風2016号による水害時においても、これらの情報は発見の段階から多くの住民に得られており、個々で発見されることが示された。これに対し、住民の、その各段階において災害発生の可能性があるか否かの判断を行っていたものと考えられる。そこで、住民の危機意識形成モデル、どのような情報構成がどの程度をもたらしていたのかをより詳細に把握するため、住民の危機意識の状態を目標変数としたロジスティック回帰モデルを用いて考察を行う。

（1）モデルの基本構築

本研究では、水害発生過程における住民の危機意識や対応行動の形成過程を時系列的に把握・検討することを目的としている。このため、各計算における対象とする期間を10日6時から避難情報の発令時間の翌日11日19時までとし、30分1単位とするデータに分けた。すなわち、55×完全回答者数個のデータを各時点において取り扱う。

ここでの目的変数は回答者の各時点での意識状態であり、「①平常」、「②都市にも被害が及ぼされないと思う」、「③災害発生を意識し始める」、「④発生を明確に意識する」の順序を保ちながらなっている。これで目的変数とする予測モデルを構築するためには、例えば、適用ロジスティック回帰、オーダードロジットモデル、数値化理論II類、等の手法が考えられるが、これらモデルでは、目的変数のデータ構成上、問題を起因として、評価の観点での現状再現性を確保することが難しく、そこで、以下のように目的変数を2分類し、その境界を予測する二項ロジスティック回帰によってモ
表-2 危機意識形成モデルのパターン別の適合度指標

<table>
<thead>
<tr>
<th>目的変数</th>
<th>パターン1</th>
<th>パターン2</th>
<th>パターン3</th>
</tr>
</thead>
<tbody>
<tr>
<td>初相率</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>最小相率</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
</tr>
<tr>
<td>大雨観測指数</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>総合相率</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
</tbody>
</table>

表-3 危機意識形成モデルの推定結果（Pattern2を採用）

<table>
<thead>
<tr>
<th>目的変数</th>
<th>パターン1</th>
<th>パターン2</th>
<th>パターン3</th>
</tr>
</thead>
<tbody>
<tr>
<td>初相率</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
<tr>
<td>最小相率</td>
<td>2.12</td>
<td>2.12</td>
<td>2.12</td>
</tr>
<tr>
<td>大雨観測指数</td>
<td>0.67</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>総合相率</td>
<td>1.19</td>
<td>1.19</td>
<td>1.19</td>
</tr>
</tbody>
</table>

モデルをそれぞれ構成することとする。

・目的変数は「0」：(1)、(2)：(3)、(4) （「少なくとも平常
時ではない」という意識状態を説明するモデル）
・目的変数は「0」：(1)、(2)：(3)、(4) （「災害が発生す
かかもしれない」という意識状態を説明するモデル）
・目的変数は「0」：(1)、(2)：(3)、(4) （「災害の発生を明
確に意識した」とするモデル）

説明変数として、まず、(1)のような最も単純な形とし
て、情報xの入力が危機意識の形成にαだけ影響をもた
らすとしたもので、以下ではPattern1を呼称する。

しかし、情報の入力状況が危機意識の形成にたるまら
影響の仕方は、回答者の特性によって大きく異なること
が予想される。たとえば、住民個人が平常時に抱く自宅
の潜在的浸水可能性に関する認識が異なることによって,
たとえ同じ要因を入力した個人である場合も、その情報が
危機意識の形成へ与えるインパクトは異なるであろう。つ'
まり、情報の受取方や解釈の仕方が異なるということ
を考えられる。ここで、(2)のような情報入力が意味的
であるインパクトは、自宅の潜在的浸水可能性認識を「高
い（D=0）」と考え方である回答者は「低い（D=0）」と考え
ている回答者はもしくはβの値だけ異なるとして、式(2)のよ
うに(a+βD)を表したものを、ここではPattern2と呼
称する。

この他に、式(2)のようにDを各情報に考慮するのでは
く、式(3)のように単純に追加した場合をPattern
3として設定する。このPattern3では、Pattern2のよ
うに自宅の潜在的浸水可能性認識の差異が情報の受け止め
方により影響を及ぼすのではなく、各情報の受け止め方を一
定で、回答者の危機意識変化に際して初期値ともいうべ
きものがもとどまるという考え方に搭乗する。すな
わち、自宅の潜在的浸水可能性を「高い」と認識してい
た回答者においては、「低い」と認識していた回答者と比較
して、災害の発生を認識して意識変化が起こる閾値とも
いうべきものがもどまるという考え方で用意するの
である。

以上の様々な3つのパターンの説明変数の群を設定し、
説明力を比較することにした。

\[V = Const + \sum \alpha_X \]
(1)
\[V = Const + \sum (\alpha_X + \beta
D) \]
(2)
\[V = Const + \sum (\alpha_X + \beta
D) \]
(3)
\[p = \frac{exp(V)}{1+exp(V)} \]
(4)

\(\alpha, \beta \) : パラメータ
\(X \) : 情報入力状況 (1=入力, 0=未入力)
\(D \) : 自宅の潜在的浸水可能性認識 (1=高い, 0=低い)
\(Const \) : 定数項
\(p \) : 目的変数のカテゴリ1の生起確率

(2) モデルの係数推定結果

回答者の危機意識を説明するロジスティック回帰分析
の各パターン（Pattern 1 ～Pattern 3）の推定結果につい
て、適合度指標等を表-2に示す。

いずれのパターンにおいても尤度比は良好な値を得て

93
いるもの、回答者の自宅の潜在的浸水可能性認識を式(2)の形で考察した Pattern 2 が、それ以外の Pattern 1 や Pattern 3 と比べて AIC（赤池の情報量基準）が良好な値となっており、説明力が高い結果となった。すなわち、回答者の自宅の潜在的浸水可能性認識(D)の違いは、情報の受け止め方や解釈の仕方に違いをもたらす構造となっている様子が示唆された。そこで、ここでは、この Pattern 2 を採用することとして、そのパラメータ推定結果を表-3 に示す。

まず、定数項については、いずれの目的変数の場合においても有意の負の値となっており、説明変数群に示すような情報がいっさい入力されない状況においては、回答者の意識変化は変化しにくいということ基本的な傾向を認知することができる。

また、\(a_1 ~ a_9 \) をみると、おそらく様々な情報入力は意識の変化をもたらす方向で影響していることがわかる。なお、削減指示の入力が回答者の意識変化に与える影響（\(a_9 \)）が特に大きなものとなっていることが特徴的であるが、逆に言うと、削減指示を入力しないと意識変化が起こりにくいという、いわば削減指示への依存傾向を示唆する結果とも解釈することができます。

以上の \(a_1 ~ a_9 \) は、自宅の潜在的浸水可能性を低い（D=0）と認識している住民についてのものであるが、一方、自宅の潜在的浸水可能性を高い（D=1）と認識している住民について \(\beta_1 \sim \beta_9 \) に着目すると、\(\beta_1 \sim \beta_9 \) は正の値である傾向にあるのでに対して、\(\beta_4 \) は負の値となる傾向にある。これは、自宅の潜在的浸水可能性が低いと認識している回答者においては、「低い」と認識している回答者によって、「各地の被害状況を知る」や「降雨状況が異常だと感じる」などの事前情報をより敏感に反応する一方、削減指示への依存傾向はより緩やかである傾向にあることを示唆しているものと考えられる。なお、自宅の潜在的浸水可能性を高い（D=1）と認識している住民においては、水害進展過程のより早い段階での意識変化が可能な構造となっているものと考えられる。

ここで、得られた結果の現況再現性を、図-3 において確認する。横軸に時刻、縦軸は各時間帯における回答者の意識状態を表す5つのカテゴリーの構成比を示している。図中の凡例で示されるものは、表-3 の推定結果に基づいて回答者の危機意識の状態を推定したものであり、図中の3本の実線は、その危機意識の状態境界を回答集計に基づき算出したものである。これにより、時間の経過とともに意識が変化していく様子や、削減情報が発令されてからの急激な意識変化の様子が再現されており、実際の予測がおかむらに同様な傾向で推移していることが確認された。

図-3 危機意識形成モデルの現状再現性

6. 住民の対応行動の形成要因

前章では、水害進展過程における住民の情報入力と危機意識の形成との関連性を検討した。このような過程のなかで、どのような対応行動がどの時点で実施されるのか、主にその時点での危機意識の状態が大きいか影響をもたらしているものと考えられる。そこで、ここでは、水害進展過程における住民の対応行動の形成要因について、住民の危機意識の状態を主な説明変数としたロジスティック回帰モデルを構築することにより検討する。

（1）モデル構成の検討

目的変数は、「避難行動」、「家財保全行動」、「情報取得行動のみ」、「なし」の4カテゴリーである。ここでは、多項ロジスティック回帰により分析を行う。

説明変数については、まず、最単純な形として、前章にて検討を行った住民の危機意識のみを説明変数としたものを Pattern A として推定を行った。このときの適合度指標を表-4 の Pattern A として示している。しかし、この Pattern A の場合、避難行動や家財保全行動を全く予測することが出来ていない。すなわち、回答者の行動形態の予測に関しては、危機意識以外の他の要因を考慮する必要があることが示された。

水害時における住民の行動の特徴としては、危機意識の状態においても、例えば、2 階以上のスペースを持つ家に居住する住民は家財保全行動を優先的に行う傾向にあること、水害発生時における世帯内役割分担として男性は避難行動を行いたくない傾向にあること、さらにこれららの傾向は自宅の潜在的浸水可能性が高く認識される住民ほど顕著であること等が既存研究(11)(17)により指摘されている。また、あわせて、避難準備・告知・指示の入力は、
<table>
<thead>
<tr>
<th>表4</th>
<th>対応行動形成モデルのパターン別の適合度指標</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pattern A</td>
</tr>
<tr>
<td>初期生成</td>
<td>-11192.94</td>
</tr>
<tr>
<td>最終生成</td>
<td>-6124.40</td>
</tr>
<tr>
<td>区分</td>
<td>0.453</td>
</tr>
<tr>
<td>自由度調整済み度</td>
<td>0.453</td>
</tr>
<tr>
<td>的</td>
<td>66.0%</td>
</tr>
<tr>
<td>(速動性)</td>
<td>0.0%</td>
</tr>
<tr>
<td>(家財保全行動)</td>
<td>0.0%</td>
</tr>
<tr>
<td>(保育行動)</td>
<td>75.4%</td>
</tr>
<tr>
<td>(独)</td>
<td>91.7%</td>
</tr>
<tr>
<td>AIC</td>
<td>12572.91</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>表5</th>
<th>対応行動形成モデルの推定結果 (Pattern Eを採用)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>個別性</td>
</tr>
<tr>
<td></td>
<td>既定値</td>
</tr>
<tr>
<td>離散数</td>
<td>2.14</td>
</tr>
</tbody>
</table>

※ 説明変数のうち、「自宅の潜在的浸水可能性」について高いと予想した場合を「+」、低いと予想した場合を「-」と表す。

※ * p<0.10, ** p<0.05, *** p<0.01

前章での分析において確認された危険意識の変化は別の側面として、住民が具体的な行動をとる際の実質的なトリガーとして作用していることが予想される。

そこで、ここでは、これらの知見を踏まえ、以下のに示すPattern B～Pattern Fの説明変数群を設定し推定を行った。

Pattern B：危機危険、属性（住居形式、性別）。
Pattern C：危機危険、避難情報の入手状況。
Pattern D：危機危険、属性（住居形式、性別）、避難情報の入手状況。
Pattern E：上記Pattern Dの説明変数群が住民の行動形態へと及ぼす影響の仕方、自宅の潜在的浸水可能性をどの程度に認識しているか(D)によって異なるとの考え方に基づき、前章での式(2)と同様の形にてDを考慮する。
Pattern F：上記のPattern Dに、前章での式(3)と同様の形にて、自宅の潜在的浸水可能性認識(D)を考慮したもので考慮する。

以上の各パターンについての推定を行った際の適合度指標は、Pattern Dにおいてはモデルの説明力の向上が見受けられ、さらに、自宅の潜在的浸水可能性認識(D)をPattern Eの形式で考慮した場合において、AICが最も小さくなる良好な値となり、特に、家財保全行動のうち、Dの比率は約40%まで上昇する結果となった。すなわち、危険意識の変化や属性、避難情報の入手といった説明変数群が住民行動へ及ぼす影響は、住民が自宅の潜在的浸水可能性をどの程度に認識しているか(D)によって異なる構造となっている様子が示唆された。

(2)モデルの係数推定結果
前章での検討を踏まえ、ここではPattern Eを採用し
図5 危機意識形成モデルの現状再現性

図4 自宅の潜在的浸水可能性の認識別にみた
係数推定値の動き

その係数推定結果を表-5に示す。図-4はその係数推定値をグラフ化したものであり、(1)は自宅の潜在的浸水可能性を「低い(D=0)」と認識する回答者についての係数値(α, β)を、(2)は「高い(D=1)」と認識する回答者の係数値(α + β)をそれぞれ示している。

まず、定数項については、いずれの選択肢においても負値となっており、何らかの説明変数の変化が生じない限りは何ら行動が行われないとという基本的な傾向を確認することができる。

自宅の潜在的浸水可能性を「低い(D=0)」と認識する回答者についてのα1、a2に着目すると、避難行動の実施に最も影響を及ぼしているのは、災害発生を明確に意識する(a1)であり、次いで「避難指示の入手(a2)」となっている。一方、「災害発生を意識し始める(a3)」や「恐怖から避難の求められないと思う(a4)」などの係数値が、「情報取得行動の重要性」に対して大きな値となっているのが特徴である。これは、台風接近時における住民の情報取得行動は、「①災害発生を明確に意識する」した状態と「②平常」の間の状態、すなわち、判断材料が不足し「平常時」とも「災害時」ともとっさに判断することのできない状態状態において、状況認識をより明確なものとするために行われるものと解釈することができ、図-2における考察、ならびに文献(12)における考察とも一致する。

それからの、「住居に2階以上のスペースがある」を示すα1は避難行動以外の選択肢において有意な正値をとっている。男性は避難行動を行わないと一概にあり、ここでは避難準備の入手、いずれの選択肢に対しても有意な影響を持っていない。性的傾向は確認される。

一方、自宅の潜在的浸水可能性を「高い(D=1)」と認識する回答者についての係数値を示した図-4に着目すると、まず、「災害発生を明確に意識する」や「災害発生を意識し始める」という意識状態にある回答者は、避難行動よりもむしろ家財保全行動を実施する傾向にあることが特徴である。その一方で、避難指示や避難勧告の入手は、情報取得行動と家財保全行動への係数値は相対的に小さく、避難行動ととの関連がより顕著に現れていることがわかる。また、避難準備の入手に関する係数値は、(1)では有意ではなかったが、(2)では避難行動の実施について有意な正値となっている。これからの結果は、避難情報の入手が具体的な行動、特に避難行動の実施のトリガー（trigger）として作用していたことを示唆するものとして解釈できるよう。また、「住居に2階以上のスペースがある」住民は、避難をせずに家財保全行動を積極的に実施するという傾向があり、(1)の自宅の潜在的浸水可能性を「低い」と認識する回答者に比べてより顕著に現れている。これにより、男性は避難行動を実施していこうとしない傾向にあること、等を確認することができ、既存研究(13,16,17)において確認されている傾向と一致している。

以上の推定結果の現状再現性を、図5において確認する。図5中の凡例は、図3での推定結果に基づいて各回答者の行動を推定したものを示しており、図3の中の実線が、その行動状態の境界を回答者集計に基づき求めたものである。これにより、時間の経過とともに行動が変化していく様子や、やや過剰推定であるものの、避難
情報が発令されてから急激に避難行動を行う回答者が増加してゆく様子が再現されており、実際と予想がおおむね同様な傾向で推移していることが確認できる。

7. シナリオ想定分析

以上までの検討で、水害の進展過程において、住民は周辺状況の変化や入った災害情報をどのように受け止め、危険意識を形成するのか、さらには、そこで形成された危険意識に基づきどのように対応行動をとるのか、という一連の関係構造を、ロジスティック回帰分析を用いて把握した。ここでは、これらの推定結果を用いて、種々の状況想定下での危険認識力の変化過程を推定することにより、災害情報の提供や洪水ハザードマップの配布などの施策がもたらす効果について考察を加える。

具体的には、まず、災害時における情報伝達に関する諸施策として、(1)では、早期断階での情報入手がもたらす影響について、(2)では、避難準備、避難勧告、避難指示の各情報の入手中が及ぼす影響について、最後に、(3)では、平時からの災害教育の一環として、洪水ハザードマップの配布などの施策がもたらす影響について、それぞれ考察する。なお、ここででの状況想定の一覧は表6に示すとおりである。

(1) 早期段階での情報入手の影響

まず、ここでは、比較的早期の段階で多くの回答者が入手した情報として「各地の被害状況を知る」をとりあげる。実際には、7月10日本未明の台風02号接近に伴う西日本各地における被害状況に関する情報、早期の段階からのメディアを通じて多くの都道府県が入手可能な状態であった。このような比較的早期の段階で入手可能な情報、各地の被害状況を知るための情報が、早めに伝えられることが状況想定した場合（想定1）に称する。回答者の危険意識ならびに対応行動の変化を想定したものが図6と図7である。なお、ここでは、比較のために、状況想定変数の変数をそのまま入力した場合（想定0）と称する。回答者の危険意識ならびに対応行動の変化を、各
めることとまっており、避難情報が発令された3時以降で危険に注意を払う傾向が増加する傾向となっている。その結果としての対応行動を図-7に見ると、11月3日の時点で何ら行動をおこさない回答者が約60%を占めている。また、家財保全行動の実施率が非常に低くなる傾向にあることがわかる。すなわち、早期段階での被害状況等の入手が欠けるような場合は、より早い段階で明確な意識の強化を図ることが必要となる。それらの結果によると、より早期段階における家財保全行動などのように避難に備えた準備行動を実施する手段的・精神的余裕を生みにくい状況となる傾向にあることが示された。

【2】避難情報の影響

前節の結果においても、避難情報が発令された時点以降では、災害発生に対する明確な意識の醸成や避難行動の実施が急激に促進されている様子が伺えた。そこで、ここでは、避難情報の入手による影響を、避難準備・避難報告、避難指示のそれぞれについて詳しく見ることとする。ここでは、避難指示は発令されず、避難準備・避難報告のみが発令された状況を【想定2】、避難準備のみが発令された状況を【想定3】、避難指示のみが発令された状況を【想定4】として、各想定下での回答者の様子の推移を図-8に、同様に回答者の対応行動を図-9に、それぞれ示している。いずれも、対比のために、【想定0】における各カテゴリーの線を実録にて示している。

まず、避難指示が発令されない【想定2】についてみると、避難準備・報告の発令後において【想定0】の発令に至るまでの防止を図る回答者の割合は、【想定0】と比較するとわずかな低下にとどまっている。しかし、行動面については、避難行動を実
図10 自宅の潜在的な浸水可能性認識の向上がもたらす対応行動への影響

この水害に際しては、それを実際に適用に移した初めての事例となった。避難準備は、避難勧告・避難指示の対象となる地域の住民に、より早さを期し、その緊急性を認識させ、避難に対する心構えを持つことで、避難の準備を行うだけでなく、避難時の様子の混乱を避けることを意図として設定されている。ここでの分析は、避難準備の発表が住民の対応行動に与える影響を定量的に示したものであり、避難準備の発表は、直接的には家財保全行動の実施を促す可能性が高いことが示唆される結果となった。

（3）自宅の潜在的な浸水可能性認識の影響
水害発生時に住民の適切な災害意識の醸成ならびに対応行動の誘導の観点からは、前節までの分析のように、より早期における事前の情報の伝達や避難情報の発表等が一定の効果をもたらすことが示された。一方、洪水ハザードマップ等の配布等による事前の適切な災害教育の実施は、住民個人のレベルで居住地に関する潜在的な浸水可能性を適切に認識することで、水害時におけるより適切な住民行動の誘導に資することが期待される。

このような観点のもと、図10では、事前の災害教える徹底し、全ての住民が自宅の潜在的な浸水可能性を適切に認識した状況を想定した場合（すなわち全ての回答者についてD=1となる）の対応行動の推移を示した。このうち、【想定5】は【想定4】と同様に避難情報がいつでも発令される状況を、【想定6】は【想定5】と同様に避難準備・避難勧告・避難指示が実際通りに発令された状況を、それぞれ示している。

これらにより、自宅の潜在的な浸水可能性を住民が適切に認識することによる影響は、【想定5】と【想定6】に共通して、避難行動の実施においてはその実施率を若干上昇させるもので、その効果は、主に家財保全行動の実
施率の向上となって現れていることがある。すなわち、避難行動の実施に際しては、結果的には避難情報の入手、特に避難勧告や避難指示の入手が決定的な要因であり、これらの情報入手が避難行動開始のトリガーとなっている一方で、自宅の潜在的浸水可能性認識の向上は、避難行動の前段階として、早い段階から家財保全行動の実施を促進することにより、より余裕をもって避難行動を可能とするかたちで影響をもたらすという様子が示唆される結果となった。洪水ハザードマップの公布効果に関しては、従来より避難行動への効果を中心に、いくつかの検討が行われているが、このの分野では、水害進展過程の中で住民が行う家財保全行動や情報取得行動などへの効果も含め、洪水ハザードマップの総合的な効果が把握されることになる。

B. おわりに

本研究では、水害進展過程における住民個々の心理的背景に着目し、周辺状況の変化や災害情報の入手が危険意態の形成にもたらす影響、さらにはその危険意態を介しての対応行動の形成に及ぼす影響性の構造を時系列的に定量的に把握した。その結果、得られた知見や成果をまとめると以下のようになる。

- 水害進展過程の住民の危険意態の形成において、種々の災害情報の入手がもたらす影響は、その住民が事前から自宅の潜在的浸水可能性をどの様に認識しているかによって異なる。具体的には、住民が自宅の潜在的浸水可能性を“低い”と認識している場合は、総じて避難指示への依存傾向（避難指示を入手しないと避難行動を決定する）がより高いと示唆される一方で、自宅の潜在的浸水可能性を“高い”と認識している場合は、そのような依存傾向は軽減され、水害進展過程のより早期の段階で高い危険意態を持ち得る情報構造となっていことがあるとする結果を得た。

- 住民の対応行動の形成においても、事前から自宅の潜在的浸水可能性をどの様に認識しているかによってその形成構造が異なる。具体的には、事前から自宅の潜在的浸水可能性を“低い”と認識している場合、避難行動開始の動機となっているのは災害発生を未然に認識することであり、それまでの間はまだまだ情報取得行動には極端にあたること、一方で、事前から自宅の潜在的浸水可能性を“高い”と認識している場合は、避難勧告や避難指示の入手で避難行動開始のトリガーとなっており、それまでの間には従来家財保全行動を行う傾向にあること、などの相関が把握された。

- 避難勧告や避難指示の入手は避難行動の実施促進する方向で直接的に作用する一方、それよりも前の段階で発表される避難準備情報の入手は、家財保全行動の実施を促す作用があることが示唆される結果を得た。このことは、当該地域において避難準備→避難勧告→避難指示というように、避難情報に段階性があることが影響しているものと推察される。

- 水害ハザードマップの公布の発効効果に関しては、特に早期段階の激変時期において、即座に行動を起こすためには、そのような情報の段階性に対する住民理解を誘導していいくことが重要と考えられる。

しかし、本研究では、住民の対応行動を実施しようとすら動機付けの段階を設定して、主に危険意識を直接的に分析を行ったが、その他の側面、例えば、避難場所の選択や、避難ルートはどのようにか、といった具体的な行動計画を示す知見もまた明確に取り扱っていく必要がある。このような具足的な行動計画を示す者、例えば、水害進展においては、洪水の浸水可能性を示すマップの役割があると考えられるが、本研究での検討の範囲はこれに限られたものである。水害の進展においては、同じような検討課題を残しているものであり、災害の進展に伴う住民の対応行動の形成過程における基本的特徴は十分に把握されたものと考えている。

謝辞：本研究は、平成15年度科学研究費補助金基盤研究B(1)【研究番号 1550273】研究代表：寺田敏孝】基盤研究G(4)研究番号 15301130、研究代表：河田惠明】および独立行政法人科学技术振興機構戦略的創造研究推進事業・社会技術研究システムの助成をいただき。また、東北大学大学院経済学研究科・林作泰久教授には有益なご助言をいただいた。ここに記して深謝の次第である。

補足
[1] 本調査において、回収数が377票（回収率11.4%）であることについては、対象地域に居住する世帯数が3519世帯
参考文献
2) 片田敏孝、児玉真、浅田純作、及川慶、荒尾元件: 東海豪雨災害事例に伴った避難に関わる意思決定の状況依存特性に関する研究, 土水学会水工学論文集, 第46巻, pp.319-324, 2002.
9) 池田健一: 緊急時の情報処理, 認知科学選書9, 東京大学出版会, 1986.

(2004.1.5 受付)