焼酎蒸留粕を用いたエコポット量産化装置の開発とそのポットの特性に関する研究

山内正仁۱・増田純雄۲・木原正人۳・山田真義۴・米山兼二郎۵・原田秀樹۶

۱正会員 工博 鹿児島工業高等専門学校助教授 土木工学科（〒899-5193 鹿児島県姶良郡隼人町真栄 146-1）

۲E-mail:yanai@agoshima.cc.ac.jp

۳正会員 工博 宮崎大学助教授 工学部土木環境工学科（〒880-2155 宮崎県宮崎市学園木花台西 1-1）

۴正会員 鹿児島工業高等専門学校技術専門職員 技術室（〒899-5193 鹿児島県姶良郡隼人町真栄 146-1）

۵学生会員 工修 長岡技術科学大学大学院工学研究科 博士課程（〒940-2188 新潟県長岡市上富岡町 1603-1）

۶水博 株式会社ゼノシップ代表取締役（〒890-0661 鹿児島県鹿児島市天保山 14-3）

近い将来、海洋投棄が禁止されているため焼酎蒸留粕を陸上に有効利用するために焼酎蒸留粕を古紙を原料とした植物製楽用ポット（エコポット）を量産化する装置を開発した。本装置の最も優れた特長は、原料の希釈倍率2倍、成形時間3秒、浸水時間50秒である。また、エコポットを用いて小松菜の生育実験を実施し、ポットの農業用資材としての機能を検討した。その結果、エコポット中の養分成分の70%程度の約1ヶ月間の栽培期間中にエコポットから溶出するが、微生物による取引により有機化が進行するため、エコポットは小松菜（小松菜等）のような短期作物よりも果物類（トマト等）のような長期作物に対して肥料効果が期待できる。

Key Words : shochu distillation lees, Eco friendly paper pot, agriculture materials, growth test

1. はじめに

我が国の木樽焼酎生産の約91%を占める九州地区では、年間50 万9 千 t（2002 酒造年度）の焼酎蒸留粕（以下、焼酎粕）が排出され、このうち11万9千 t が海洋投棄処分されている。とりわけ鹿児島県は、九州全域で発生する焼酎粕量の約60%で、26万3千 tを占め、今尚10万8千 tの焼酎粕が海洋投棄処分されている。今後、我が国もロンドン条約を批准するにあたり、海洋投棄に替わる経済的にフィーダブルで環境低負荷型の陸上処理技術を開発する必要に迫られており、焼酎業界にとっては何の役に立つかが問題となっている。特に焼酎業界の工業出荷額に占める焼酎の割合は、食品製造業の1割、700億円であり、焼酎粕を陸上に効果的に処理する方法の開発は地域産業の活性化および環境保全の向上に最も重要な課題である。

焼酎粕の陸上処理法は肥料化（農地還元）、飼料化と生物処理、廃棄処理等のプラン処理に分けられる。これからの方法を社会的・経済の背景に照らして考えると、いずれも問題を抱えており、有効な対策が見いだせない。肥料化については、焼酎粕はpHが低く、含水率とT×が高い濃厚スラリー状有機物であるため、土壤の酸性化、地下水汚染の問題がある。このため、焼酎粕の農耕地利用のガイドラインにより散布量が規制されている。飼料化については、特に夏季において腐敗し易く、また乾燥させた飼料化については、家畜は配合飼料で生産管理されており、非常にデリケートな生き物であり、高度な品質管理が要求されるため、商品になり難い状況にある。生物処理については、上記のように焼酎粕は濃厚スラリー状有機物であるため、固体分離が難しく、さらに従来の嫌気性処理法（有機物負荷5～10kg COD/m3日）では時間がかかり過ぎるため、維持管理が難しいこと、設備規模が大きくなること等の問題がある。廃棄物処理については維持管理が難しく、廃棄物処理装置は処理能力、施設規模が大きくなること等の問題がある。
理やコスト面の問題があり、さらに農作物由来の副産物である廃粕料を復葉薬として取り扱うことは、有効資源の未利用等の問題がある。このように、廃粕料の従来処理技術は未だ開発途上段階にあり、環境配慮型の有効な技術が確立されていないのが現状である。

このような背景のなかで、上記した問題を解決する環境配慮型技術の一つとして、筆者等は廃粕料を有機下部とした植物栽培に用いることを試み、廃粕料を産業廃棄物の状態から付加価値のある環境配慮型製品へと変えることに成功した。しかし、本装置は回分式であるため、生産性に問題を残した。したがって、今後は、廃粕料を市場に流通させるためには、安定した生産システムを構築することが必要である。

そこで、本研究では、エコポットの生産性を向上させるために、これまでの回分式装置で得られた知見を活用し、まずエコポットの量産化装置の基礎設計・開発を行った。基礎設計・開発にあたっては、回分式装置に一部既存の再生ポット製造機の原理を付加して、廃粕料の特異性に対応可能な装置への改良から着手した。しかし、その時点で完成された量産化装置（基礎量産化装置）は、製造スピードや不良率に課題が残されたため、本研究開発の目的であるポット作製に最適な量産化稼働条件を導き出すための本試験へと移行した。本試験では、基礎量産化装置を用いて、機械的な基準条件、試料の調製時間と原材料等に関する最適な量産化稼働条件が得られた。さらに、最適条件で作製したエコポットを用いて植物生育試験を実施し、エコポットの有効性を確認した。

2. 装置の概要

エコポット量産化装置は図-1に示す。本装置は、エコポットを1ショットで6個体（寸法：φ88×φ64×83mm）作製でき、試料調製から成形・加圧工程まで自動化されている。図中②の下金型（成形型）

3. 試験方法

(1) エコポット原料の成分分析法

まず量産化装置を稼働させるためには、試験材料である甘露焼酎廃粕の性状と古紙の特性を明らかにする必要があった。そこで、まず甘露焼酎廃粕の含水率、蒸発残存物、強熱減量、SS濃度及び窒素成分を下水試験方法にしたがい測定した。次に古紙に
含まれるインクから重金属が検出されることが予測されたため、古紙中のカドミウム（Cd）、水銀（Hg）、ヒ素（As）、鉛（Zn）、総クロム（T-Cr）含量を肥料分析法にしたがい測定した。

(2) エコポット量産化のための最適条件の検討

a) 機械的問題点の検討
従来の回分式ポット作製実験において、焼酎粕に含まれる固形分（SS 分）の約 98%は試料（焼酎粕＋古紙）中の変動が大であるため、ポット中に保持されることが明らかになった。しかし、焼酎粕原液の場合、1 個体のポットを吸引脱水するには 2.5 分を要し、ポット量産化には問題を残した。その原因として 1) 真空ポンプの能力、2) 試料中の固形分が多いためと考えられた。そこで本研究では、まず試料調製工程で古紙混合比 3%（甘酒焼酎粕：古紙＝100:3）の試料を水道水で 3 倍に希釈し、真空ポンプの容量を 7.5kW×4.2m/min×400ml/h から 11kW×5.2m/min×400ml/h に增大させ、真室ポンプの性能によると脱水時間及びポット合水量の変化を表-1 に示す条件で検討した。特に、金型内側の吸引孔を Ø2.5mm 肉厚 10mm のビッチ（開口率 4.9%）から Ø5.0mm 肉厚 10mm のビッチ（開口率 19.6%）に変化させ、開口率による吸引脱水の促進性を検討した。

b) 試料調製時間の検討
試料の諸特性および製造工程におけるエネルギーコストはインクライン（紙の繊維を水（焼酎粕水）ともにバルパにて機械的に分離混合すること）に依存する部分が多く、経済的な面からもインクラインのレベルを高い精度で測定する必要がある。本研究ではバブルでの最も安定した調製時間（焼酎粕 80kg、古紙 2.4kg）を明らかにするために各調製時間（5 分、10 分、15 分、20 分、30 分、60 分、90 分、120 分）における吸引度（ろ過度、バルブの脱水の容易さを示し、水切りの程度を示す）をカタナ標準ろ過水試験機で求めた。なお、本試験機を利用してあるが、各調製時間における試料は漬形水分が 0.3%になるように水道水で希釈した。

(3) エコポットを用いた小松菜の生育試験
a) 試験方法
本試験の培養土にはくん氷炭 17.4%、鹿沼土 8.7%、ゼオライト 0.1%、ビートモス 4.3%、馬鈴土 69.5%（pH6.28）の割合で混ぜたものをポットあたり 190g 用いた。表-2 に培養土の化学性を示す。培養土の pH は 6.51（H2O）であり、T-N、NH4-N、NO3-N はそれぞれ 1860、64、10.6mg/kg 乾土であった。また、化学肥料にはエマルクグリーン（昭和電機（株）、保証成分（％）；N-P-K＝14:14:14）をポットあたり 35.7mg N として 5mg、357mg N として 50mg 使用した。試験区分は各ポットにリチウム（以下、リチウム）（直径 9cm、高さ 7.6cm）に培養土を装したポット無施肥（試験区 1）、
ポリボットに各々化学肥料35.7mg、357mgと培養土を混和したものを試験土壌、ポリ多肥土（試験区2、3）、ポリボットの中にエコボット（直径8.5cm、高さ7.5cm）を入れ、エコボット表面をポリボットで覆ったポリ+エコ無肥土（試験区4）とポリ+エコ少肥土、ポリ+エコ多肥土（試験区5、6）、エコボットに培養土を試験区7、エコボットに化学肥料を培養土を試験区7、エコボットに素土を試験区8、9の9区であり、それぞれ5個体ずつ準備した。

また、エコボットに含まれる窒素の動きを明らかにするために、Nの濃度測定とガスから試験区の方法でエコボットを作製し、小松築の育成試験に供した。なお、本試験ではポリボットの内側にポリボット中に採取したエコボットを円形に改めてそのものをエコボット（試験区10）とし、養分土壌をポリボットあたり500g詰めたものを5個体準備した。

b）実験方針

2003年6月26日に試験区1～9についてはポリボット127粒ずつ、試験区10についてはポリボット127粒ずつ5粒小松築（ごせき晴生）を播種し、鹿児島県農業実用上の植物栽培が始まった。その後、7月3～4日目（播種後7～8日）、播種後10日目（播種後9～10日）、播種後12日目（播種後11～12日）に栽培を終了した。なお、栽培期間全体を通じて試験区1～9ではポリボットの通気性が高いため、乾燥し易い状態があった。

c）調査項目

試験区1～9については7月22日（播種後25日目）、試験区10については7月22日（播種後25日目）に小松築の生育状況を把握するために葉数を調査、葉形等級計（MINOLTA、SPAD-502）でSPAD値を測定した。また、栽培終了時にはSPAD値、草丈（葉長）、葉数を計測、作物の採取を行い、地上部（葉）、地下部（根）の乾燥重量を計測した。なお、試験区10については乾燥重量測定後、T-N、\(^{15}N\)を質量分析計で定量した。

表2 培養土の化学性

<table>
<thead>
<tr>
<th>分析項目</th>
<th>pH</th>
<th>EC</th>
<th>T-N</th>
<th>NH-N</th>
<th>NO_{2}-N</th>
<th>NO_{3}-N</th>
<th>DCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>培養土</td>
<td>6.8±0.191</td>
<td>1806.4</td>
<td>10.6</td>
<td>20.6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4. 試験結果と考察

(1) 甘菌系耐食土の性状分析

表3に甘菌系耐食土の性状を示す。耐食性はpHの低い、固形物を多く含む高濃度有機質泥であることがわかる。窒素としては無機態窒素（NH\textsubscript{4}-N、NO\textsubscript{2}-N、NO\textsubscript{3}-N）の少ないことからその大部分が有機態窒素である。表4に古紙に含まれる重金属成分の分析結果を示す。古紙中のT-Crは1.1ppmであったが、Cd、Hg、As、Znは全く検出されなかった。一般に乾燥土壌の平均T-Cr含量は1000ppmであることから、古紙のインク成分には、汚染に由来する重金属成分は含有されていないことがわかった。

(2) エコボット濃度化のための最適条件の検討

a）機械的問題点の検討

図2にエコボットの含水率と脱水時間の関係を示す。成形時間7秒、吸引ポンプの容量7.5kW×4.25m/min×400mmHgでポットを作製した場合、ポットに含まれる水分を75%に設定した。

表3 甘菌系耐食土（原液）の性状

<table>
<thead>
<tr>
<th>測定項目</th>
<th>測定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>4.1</td>
</tr>
<tr>
<td>含水率</td>
<td>90.3</td>
</tr>
<tr>
<td>CO_{2}-Cr</td>
<td>85,000</td>
</tr>
<tr>
<td>高根状菌物</td>
<td>66,700</td>
</tr>
<tr>
<td>乾燥減量</td>
<td>62,000</td>
</tr>
<tr>
<td>SS</td>
<td>38,000</td>
</tr>
<tr>
<td>T-N</td>
<td>2.390</td>
</tr>
<tr>
<td>NH\textsubscript{4}-N</td>
<td>32.1</td>
</tr>
<tr>
<td>NO\textsubscript{3}-N</td>
<td>2.2</td>
</tr>
</tbody>
</table>

表4 古紙の性状

<table>
<thead>
<tr>
<th>測定項目</th>
<th>測定値</th>
</tr>
</thead>
<tbody>
<tr>
<td>含水率</td>
<td>8.4</td>
</tr>
<tr>
<td>カドミウム</td>
<td>X.D.</td>
</tr>
<tr>
<td>鉄</td>
<td>X.D.</td>
</tr>
<tr>
<td>ヒ素</td>
<td>X.D.</td>
</tr>
<tr>
<td>鉄</td>
<td>X.D.</td>
</tr>
<tr>
<td>鉄推管</td>
<td>1.1</td>
</tr>
</tbody>
</table>
 Elle poate être éditée en tant que texte natif.
次に表-6 に各希釈倍率における 6 個体全てのポットが成型できる成形・脱水時間と、そのポット乾燥後の表面形状・均一性（厚さ、破れで確認）を定性的に評価した結果を示す。希釈倍率 2 倍では成形時間 0.5～5 秒、脱水時間 20～60 秒で、希釈倍率 3 倍では成形時間 2～25 秒、脱水時間 10～90 秒で、希釈倍率 4 倍では成形時間 5～25 秒、脱水時間 10～40 秒で 6 個体全てのポットを成型できた。しかしこれらのポットの表面形状と均一性を市販ポットと定性的に比較すると、希釈倍率 2 倍の場合、成形時間 0.5 秒（×）では製品の材質が薄いため、乾燥時の収縮により破れるものが多かった。成形時間 1.2 秒（△）ではポット側面と底面の縁目 に一部隙間が見られた。また、ポットに光を照射した後、その光の透過の程度でポット側面の不均一な部分が見られた。成形時間 3 秒以上（○）では市販されている古紙ポットより、肉厚は薄く感じられたが、不均一な部分は見られず、市販ポットと同等の製品を作製できた。希釈倍率 3 倍、4 倍の場合、市販ポットと同等の製品を得るためには、成形時間を希釈倍率に応じて長く取る必要があったが、脱水時間は短縮できた。これは、希釈倍率を大きくして成形時間を長くとることで、全例に試料が均一に吸引され易くなるためである。

以上の結果から、均一な製品が作製可能な成形時間は 2 倍希釈で 3 秒、3 倍で 7 秒、4 倍で 15 秒以上必要であることがわかった。

表-6 6 個ポット作成可能な試験条件

<table>
<thead>
<tr>
<th>希釈倍率</th>
<th>成形時間 (秒)</th>
<th>脱水時間 (秒)</th>
<th>表面形状・均一性</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 倍希釈</td>
<td>6.5</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>希釈倍率</td>
<td>表面形状・均一性</td>
<td>○</td>
<td>△</td>
</tr>
<tr>
<td>3 倍希釈</td>
<td>成形時間 (秒)</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>脱水時間 (秒)</td>
<td>10</td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>表面形状・均一性</td>
<td>×</td>
<td>×</td>
<td>△</td>
</tr>
</tbody>
</table>

図-5 側面の厚さと引張り強さ、密度の関係

図-5 に各希釈倍率における最適条件（2 倍希釈：成形 3 秒、脱水 50 秒、3 倍希釈：成形 7 秒、脱水 40 秒、4 倍希釈：成形 15 秒、脱水 30 秒）で作製したポットの側面の厚さと引張り強さ、密度の関係を示す。全体的な傾向として、エコボットは市販の古紙ボット（引張り強さ：39.5N, 厚さ：1.77mm）と比較して厚さは希釈倍率 2 倍、3 倍、および 4 倍でそれぞれ、1.45mm、1.26mm、および 1.15mm と 0.65～0.80 倍程度であったが、引張り強さは希釈倍率 2 倍、3 倍、および 4 倍でそれぞれ、59.9N, 52.8N、および 50.2N と 1.3～1.5 倍程度高かった。また、エコボットの密度は希釈倍率に関係なく、0.30g/cm³ であり、古紙ボット（0.12g/cm³）より 3 倍程度大きかった。このことから、古紙ボットに比べ厚さの薄いエコボットの引張り強さが大きい理由はエコボットの
表7 ポットの乾燥質量とポット中に含まれる窒素量

| 管総取量 (g) | ポット作製条件 | T-S 除去率 | ポット質量 | 窒素量の変動
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>248</td>
<td>成形後、蒸発後24時間</td>
<td>2.2</td>
<td>8.56</td>
<td>159</td>
</tr>
<tr>
<td>333</td>
<td>成形後、蒸発後24時間</td>
<td>2.1</td>
<td>7.30</td>
<td>131</td>
</tr>
<tr>
<td>433</td>
<td>成形後、蒸発後24時間</td>
<td>1.9</td>
<td>6.52</td>
<td>125</td>
</tr>
<tr>
<td>小型草作成ポット</td>
<td></td>
<td>0.0</td>
<td>8.40</td>
<td>5.3</td>
</tr>
</tbody>
</table>

ポットの骨格を形成する紙雑紙の繊維間は焼酎粕成分が十分に充填され、その成分が繊維どうしを結合する接着剤として働きためと考えられる。

表7に各希釈倍率における最適条件で作製したポットの乾燥質量とポット中に含まれる窒素量の測定結果を示す。ポットの乾燥質量は希釈倍率2倍、3倍、および4倍でそれぞれ8.50g、7.30g、および6.57gであった。また、2倍希釈で作製したポットは市販の古紙ポット（8.60g）と同程度であった。ポットに含まれる窒素の割合は、希釈倍率2倍、3倍、および4倍でそれぞれ2.2%、2.1%、および1.9%であり、希釈による大きな差は見られなかった。

これは、試料（燃焼粕＋古紙）の中の紙雑紙の繊維状型表面に繊維膜が形成され、SS分がポット中に均一に保持されたためと考えられる。なお、ポット1個あたりの窒素量は2倍希釈で187mg、3倍希釈で153mg、4倍希釈で125mgであった。

図6に各希釈倍率における最適条件でポットを作製した時に生じる腐敗のCODcr、T-S、T-N除去率を示す。CODcr、T-N除去率はそれぞれ40～55%、36～52%程度であったが、SS除去率は全ての条件において80%以上であった。このことから、エコポットを作製することで、焼酎粕の固液分離が容易に行われ、かつ、図形分（SS分）は効率良くポット原料として利用されることがわかった。また、焼酎粕中のSS分の80%以上はポット原料として利用されることから、ポット作製後の腐敗は従来通り、嫌気性処理法と好気性処理法を組み合わせた方法で十分可能と思われる。

以上の結果から、ポットの生産性（成形・脱水時間）、物理・化学特性、および腐敗の性状を考慮すると、4倍希釈：成形15秒、脱水30秒が最適条件と考えられる。しかし、焼酎粕そのものの消費の面から考えると希釈倍率が高い程、明らかに非効率である。したがって、両者を総合した面から最適と考えられるエコポット量産化装置の稼動条件は2倍希釈の成形3秒、脱水50秒と考えられた。なお、ポット作製過程で生じる腐敗をメタン発酵処理する場合、発酵後の冷却排水等でさらに2倍程度希釈する必要がある。

(3)エコポットを用いた小松菜の生育試験

本試験では、2倍希釈、成形3秒、脱水50秒の条件で作製したエコポットを用いた。

図7に播種後26日の小松菜の生育状況を示す。全体的に有機肥料の添加にともない生育が良好となる傾向にあった。特に試験区6は葉の緑が濃いことから、窒素分を多量に吸収していると考えられる。このことはSPAD値（42.5）からも推察できる。試験区9では植物体の生長は良好に見えますが、葉は折れ曲がり全体的に細くなっているように観察され、試験区1、2は葉の黄化が観られ、肥料成分が不足していると考えられる。

表8に各ポット区における栽培終了時の小松菜の生育試験結果を示す。草丈は最大葉の基部から先端までの長さとした。全体的な傾向として草丈の生長はエコポット表面をポリポットで覆ったポリ＋エコ系（試験区4, 5, 6）において最も良く、次いで、エコ系（試験区7, 8, 9）、ポリ系（試験区1, 2, 3）の順であった。このように、ポリ＋エコ系で草丈の生長が高まった理由としてはエコポット表面をポリポットで覆うことでエコポットの保水性が維持され、その結果、エコポット中の肥料成分が土壌中に溶出し易くなったためと考えられる。次に化学肥料を添加していない試験区1, 4, 7で草丈を比較すると、試験区4, 7はそれぞれ18.5cm, 17.5cmと試験区1の7.3cmより生長が大きく差が生じた。
葉数は葉長3cm以上の展開葉数とした。全体的に、葉数は葉丈と同様な傾向が見られた。栽培終了時の葉数は、試験区6が11.5枚と最も多く、次いで、試験区3、11.4枚、試験区9、11.2枚の順であり、多肥区で多くなる傾向にあった。

地上部の乾燥重量は試験区6が2.104gと最も重く、次いで、試験区3、1.880g、試験区9、1.298gの順であった。この結果を葉丈の調査結果と比較すると、特に試験区9の葉丈は試験区3と同様な結果であったが、乾燥重量はその2/3程度であった。これは、エコポットは通気性が非常に良くなり、土塊が乾燥し易いことから、生育が抑制されたと考えて、次に化学肥料を追加していない試験区（1、4）で乾燥重量を比較すると、試験区4、7は試験区1のそれぞれ4.1倍、2.3倍であった。このことから、エコポットに肥料効果があることは明らかである。しかし、その効果はさほど大きなものではないかった。地下部の乾燥重量についても地上部と同様な傾向が見られた。

次に、エコポット中の肥料成分（窒素）の動態を解明するために、14Nでラベリングした肥料を用いてエコ紙を作製し、これをポリポットの内側に張付け、小松菜の生育試験を実施した。

図-8にエコポット区（試験区10）の栽培終了時の窒素収支を示す。エコポットに含まれる窒素成分のうち、地上部、地下部へ吸収されたものの割合はそれぞれ14.6%、1.9%であった。また、エコポット由来窒素の約半分（54.2%）は土壌中に残留していた。以上の結果から、エコポット中の窒素成分の約70%は栽培期間中に排出し、植物に吸収されることなく、土壌中に残留していた。
表-9 栽培終了時の土壌の化学性

<table>
<thead>
<tr>
<th>試験区</th>
<th>試験区</th>
<th>pH</th>
<th>EC</th>
<th>1-N</th>
<th>1-EC</th>
<th>5-N</th>
<th>5-EC</th>
<th>10-N</th>
<th>10-EC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ユニット区</td>
<td>6.65</td>
<td>0.199</td>
<td>1980</td>
<td>6.29</td>
<td>10.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

や土壌中に存在することがわかった。

表-9に栽培終了時の土壌の化学性を示す。栽培開始時（表-2）と終了時でEC、無機態窒素量を比較すると大きな差は見られなかった。このことから、
エコポット由来の窒素が土壌に付着されたのに土壌中の無機態窒素量が増加していないことから、エコポット由来の窒素は微生物による取り込みにより、
有機化が進行していると考えられる。また、有機化した窒素は徐々に無機化し、長期にわたって作物に吸収されると考えられる。

以上の結果から、エコポットは葉菜類のような短期作物よりも、果菜類のような長期作物に対して肥料効果が期待できる。

5. おわりに

本研究では廃熱水に適したエコポット量産化装置を開発し、その稼働条件を検討した。また、適温条件を満たすエコポットを用いて小松菜の生育試験を実施し、ポットの特性を明らかにした。以下に本研究で得られた知見を示す。

1) 吸引ポンプの容量と金型を改造することにより、廃熱水に適したエコポット量産化装置を開発した。

2) バルブでの試料（廃熱水+ガス）調製水を一定にしたための水組試験を行った。その結果、有機物が調製やすい試料を得るためには30分程度の時間を要することがわかった。

3) ポットの生産性（成形・脱水時間）、物理・化学特性、および酸液の性状を考慮し、4倍希釈：成型15秒、脱水30秒が最適条件と考えられた。しかし、廃熱水そのものの消費面から考えると希釈倍率が高いほど、明らかに非効率である。そこで、両者のバランスを考慮して、
最適と考えられるエコポット量産化装置の稼働条件は2倍希釈：成型3秒、脱水50秒と決定した。

4) エコポット単独では通気性が良すぎるため、灌水量をポット内より多くする必要がある。

5) エコポットの表面を覆うことで、エコポットの肥料効果が高まった。

6) 1Kトレーラー実験において、エコポット由来の窒素の動態を解析した結果、エコポットに含まれる窒素は発酵菌による分解により、小松菜の地上部、地下部へ吸収されたものの割合はそれぞれ14.6%、19%であった。また、エコポット由来窒素の約50%（55.6%）は土壌中に残存していた。このことから、窒素成分の約70%は約1ヶ月間の栽培期間中にポットから溶出することがわかった。

7) 小松菜の栽培開始時と終了時における土壌中のEC、無機態窒素量を比較すると大きな差は見られなかった。このことから、土壌中のエコポット由来の窒素は微生物による取り込みにより、
有機化が進行していると考えられる。

8) 小松菜の生育試験結果から、エコポットは葉菜類のような短期作物よりも果菜類のような長期作物に対して肥料効果が期待できる。

最後に、市場性について若干触れたが、本の算出上は国内におけるポット量の流通量は、年間50億円、売上において100〜150億円市場と推定される。本製品で事業化を図った場合の利益計画の

表-10 試算例

<table>
<thead>
<tr>
<th>金額単位：千円</th>
</tr>
</thead>
<tbody>
<tr>
<td>ポットの製造費 35,000</td>
</tr>
<tr>
<td>材料費 10,000</td>
</tr>
<tr>
<td>工場設立費 2,000</td>
</tr>
<tr>
<td>研究開発費 5,000</td>
</tr>
<tr>
<td>市場調査費 1,000</td>
</tr>
<tr>
<td>合計 52,000</td>
</tr>
</tbody>
</table>

現在の試作試験から確立された技術による試算条件

1) 搬送時間：8時間/日×200日、1日の試料処理量：5,000円/トン。

2) 人件費：750円/時間、電力費：300円/時間。

3) 古利課人件費：10円/kg、水道費：150円/kg。

4) 休暇料：1年10%
一部（試算例）を表10に示す。これによると、仮に5期目で焼酎粕を約3,600トン処理した場合、売上高にして2億4,800万円、経常利益約5,500万円となるものの、焼酎粕の処理量は全体の0.72%、既存のポリプロップ生産量に占める割合は、0.57%に過ぎない。製品を大量に流通させるためには、後製造装置の大型化、効率化といった課題を残す一方で、市場規模としては十分魅力的である。

謝辞：本研究は経済産業省の地域新生コンソーシアム研究開発事業（平成14、15年度）の一環として実施された。関係者各位に深謝致します。中でも、鹿児島県工業技術センター化学・環境部長吉本正志氏、鹿児島県工業技術センター振興部長吉本正志氏、鹿児島県工業技術センター振興部長吉本正志氏、鹿児島県工業技術センター振興部長吉本正志氏、鹿児島県工業技術センター振興部長吉本正志氏に多くの情報を提供して頂いた。さらに製品開発試験を実施の際には鹿児島大学農学部土壤肥料学教室の協力を得た。ここに記して謝意を表します。

参考文献
1) 鹿児島県酒造組合連合会：平成14酒造年度本格焼酎原料別製成数量と蒸留粕の処理別・月別数量（2003）
2) 鹿児島県本格焼酎技術研究会：鹿児島の本格焼酎、春総出版、pp.163-184、2000。
3) 横川健一、松永裕：南九州における焼酎廃液処理の現状と課題、九州経済調査月報、39巻、8号、1998。
4) 鹿児島県農政部：焼酎廃液（粕）の農耕地利用のガイドライン、pp.1-9、1995。
5) （株）三菱総合研究所：焼酎蒸留粕の処理・リサイクル技術、1998。
6) 新村孝平：焼酎蒸留粕の処理方法に関する研究（2）榨みの現状について、EIO情報、（財）鹿児島県新産業育成財団、5巻、pp.10-11、1996。
7) 山内正仁、中平重文、松本康司、前野直人、三原めぐみ、米山康男：甘露焼酎蒸留粕の有効利用に関する研究（1）蒸留粕作製とその物理的、力学的性質、農薬物学会論文誌、Vol.10、No.4、pp.204-213、1999。
8) 山内正仁、川本なぎさ、中平重文、松本康司、増村純雄、前野直人、米山康男、花橋正孝、甘露および麦焼酎蒸留粕作製を製した蒸留紙の化学的特性とチキンサイの生育試験、農薬物学会論文誌、Vol.11、No.5、pp.221-240、2000。
9) 山内正仁、増村純雄、木原正人、平田登基男、米山康男、前野直人、松本康司、米山康男：蒸留粕作製を用いた資源循環型製品の開発に関する研究、土木学会環境工学研究論文集、Vol.38、pp.111-122、2001。
10) （社）日本下水道協会：下水試験方法、1997。
11) （財）日本土壌協会：土壌機能モニタリング調査のための土壌、木質及び植物体分析法、2001。
12) 大江恵三、久田誠人、上森武夫、尾崎史彦、村上浩二：バルブおよび紙、pp.107-122、文來堂出版、1996。
13) 日本規格協会：JISP8111、JISP8113、JISP8118、JISP8121、1997。
14) 日本農業教育学会：学校の栽培廃棄物、（社）農業漁村文化協会、1999。
15) 北野康：地球環境の化学、裳華房、1984。
16) 江南明網：紙のトライポジシオン概説、トライポジシオン46（10）、pp.741-746、2001。

（2004.10.15受付）

R & D OF MACHINERY DEVICE OF ECO-POT MASS PRODUCTION AND EVALUATION OF FERTILIZER EFFECT

Masahito YAMAUCHI, Sumio MASUDA, Masato KIHARA, Masayoshi YAMADA, Kenjiro YONEYAMA and Hideki HARADA

We manufactured a machinery device for continuous-mass-production of eco-friendly gardening pot (eco-pot) from solid fraction of the shochu-waste. Not only physico-chemical characterization of eco-pot, but also evaluation of its horticulural fertilizer effects was conducted by cultivation of "Komatsuna" vegetable. As the optimum operational conditions, twofold dilution of the raw material (the stillage waste) with tap-water, and 3 seconds of one-shot molding time duration and following 50 seconds of dehydration of time duration are experimentally turned out to be recommended. An eco-pot was evaluated to have a more significant fertilized effect upon long-term crop vegetables like fruit, rather than short-term leaf vegetables.