垂直板による波の反射率・透過率およびエネルギー損失

REFLECTION AND, TRANSMISSION COEFFICIENT, AND ENERGY LOSS OF SURFACE WAVE BY A VERTICAL BARRIER

日野幹雄・山崎丈夫

By Mikio Hino and Takeo Yamazaki

1. まえがき

不連続な境界による進行波の変形の問題に関しては、古くは Lamb が扱っている。また、Bartholomeusz は Havelock の wave-maker 理論を使い同様の結果を得ているが、それは長波に限られている。Dean, Ursell は無限水深中に置かれた垂直板の効果を厳密に解いており、Newman, Takano は wave-maker 理論から得られる積分方程式の数値解を求めている。ほかの解法としては、変分法を使って Miles が底面のステップを、Mei & Black は矩形障害物のある場合の解を求め、Evans, John は Riemann-Hilbert 問題として解いている。また、Wiegel らはエネルギー分布より反射率・透過率を求めた。

本研究では、厳密解を求めるのが困難である有限水深中の垂直板の波および速度に関する model wave-maker 理論より得られる積分方程式を直接数値的に解き、反射率、透過率を求めた。しかし、実際の場合は板の近くでなんらかの形でエネルギーテンシャル損失が生じ、そのためポテンシャル理論から求めた透過率は実験値より大きい値を示す。その大きさを見積るものとして、エネルギーテンシャル損失と抗力の関係から説明を行なった。

2. 速度ポテンシャルの計算

完全流体の微小振幅波に対して、図一のように、一定水深 h の中で h'H の板が置かれた場合の進行波の変形を二次元問題として考える。簡単な速度ポテンシャル φ(x, y, t) = φ(x, y) e^{jωt} として、時間の要素を含めた φ について考えると、φ はラプラスの方程式 (1) を満たす。

\[\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0 \]

境界条件は次のようにある。

\[y = -h \quad \frac{\partial \phi}{\partial y} = 0 \]
\[x = 0, \quad -h \leq y \leq -H \quad \frac{\partial \phi}{\partial x} = 0 \]
\[y = 0 \quad \frac{\partial \phi}{\partial y} - \phi = 0 \quad s = \frac{ao^2}{g} \]

いま、x ≥ 0, x ≤ 0 の φ をそれぞれ φ_, φ_ とする。以上の条件を満たす (1) の解は次のように書くことができる。

\[\phi_+ = \phi_+ e^{i(kx + \omega t)} \]
\[\phi_- = \phi_- e^{i(kx - \omega t)} \]

\[f_i(y) = \frac{1}{\sqrt{2}} \left(h + a \sinh kh \right)^{1/2} \cosh k(y + h) \]
\[f_n(y) = \frac{1}{\sqrt{2}} \left(h - a \sinh q_n h \right)^{1/2} \cos q_n(y + h) \]
\[kh \sinh kh = -\alpha h \]
\[q_n \sinh q_n h = -\alpha h \]

ただし、i, j, k, n, m, r は複素数である。f_i(y), f_n(y) は、-h ≤ y ≤ 0 で正規化直交級数系をなしんでいる。

式 (2), (3) は、それぞれ \(x \to \infty, x \to -\infty \) で第 2 項が消え、進行波である透過波、入射波、反射波だけが残る。

いま、反射率を \(|R| = |r| \)、透過率を \(|T| = |\phi_\tau / \phi_t| \) で定義する。
\(x = 0 \) での水平方向の流速を \(U(y) \) とし、速度の連続条件

\[
U(y) = \frac{\partial \phi_+}{\partial x_{x=0}} = \frac{\partial \phi_-}{\partial x_{x=0}}
\]

に式 (2)，(3) を代入すると,

\[
U(y) = -ik \phi_1 (1-r)f_1(y) + \sum_{n=2}^{\infty} q_n b_n f_n(y)
\]

(4a)

\[
= -ik \phi f_1(y) - \sum_{n=2}^{\infty} q_n B_n f_n(y)
\]

(4b)

\(f_1(y), f_n(y) \) が正規化直交系であるので，式 (4a), (4b) \(f_1(y) \) あるいは \(f_n(y) \) を掛け \((-h, 0) \) の区間で積分すれば，境界条件より \(-h \leq y \leq -H \) で \(U(y) = 0 \) であることを考慮して，それぞれの複素定数は次のようにより求める。

\[
-ik \phi f_1 (1-r) = -ik \phi f_1(y) = \int_{-H}^{0} U(\eta)f_1, \eta d \eta
\]

(5)

\[
q_n b_n = q_n B_n = \int_{-H}^{0} U(\eta)f_n, \eta d \eta
\]

(6)

また，速度ポテンシャルの連続条件

\[
\phi_{x=0} = \phi_{x=0}
\]

に式 (2)，(3) を代入すると,

\[
\phi f_1 (1+r)f_1(y) + \sum_{n=2}^{\infty} b_n f_n(y)
\]

\[
= \phi f_1(y) + \sum_{n=2}^{\infty} B_n f_n(y)
\]

(7)

となり，式 (5)，(6) を式 (7) に代入して整理すると，次の式が得られる。

\[
\phi f_1(y) = \int_{-H}^{0} U(\eta)G(\eta, y)d\eta
\]

(8)

ここで，

\[
G(\eta, y) = \frac{i}{k} f_1(y)f_1(\eta) + \frac{1}{q_n} f_n(y)f_n(\eta)
\]

式 (8) は，第 1 種 Fredholm の積分方程式で，1. で述べたように種々の方法で求めているが，それは大変複雑であり，また厳密解がただ一つ存在するとは限らないので，右辺を Gauss-Moors の方法（たとえば日高考次 (1941)) で数値積分し，連立方程式に直して解いたが，そのため求まった \(U(y) \) の一部を図-2 に示す。ただし，横軸は，\(\sqrt{k(h+\sigma \sinh k(h))^{-1/2}} = 1 \) と置いたときの \(U(y) \) の実数部分で，その大きさの物理的意味はあまりない。

\(U(y) \) が求まると式 (5) より反射率と透過率がわかるので，\(\rho h \) に対する |R|，|T| を図-3 に示す。破線は，Mei & Black が，水底に長さ \(l \) の矩形障害物があり，\(l \rightarrow 0 \) とした場合の，変分法を用いて計算した値である。

実験との比較は図-4.1～図-4.3 に示した。

3. エネルギー逸散と抵抗係数

入射波に対するエネルギーの逸散率 \(P \) は,

\[
P=1-|T|^2-|R|^2
\]

(9)

となる。

ポテンシャル理論では \(P=0 \) であるが，板の上端が特異点となり，\(U(y) \) が無限大になるので，実際の場合ははく離が生じ，当然のことながら \(P>0 \) である。このことは，図-4 で数値解にくらべ |R| の実験値はほぼ一致するが，|T| の実験値は下まわるということからも明らかである。
この大きさの見積りとして、次のように考えた。
1 周期当たりのエネルギー逸散量を \(\varepsilon \) とすると、\(\varepsilon \) は次のように考えてよいであろう。

\[
\varepsilon = \int F(t)u(t)dt .. (10)
\]

ここで、\(u(t) \) は流速、\(F(t) \) は板に働く力であるが、

それぞれ次のように仮定する。

\[
F(t) = \frac{1}{2} C_D \rho A u(t)|u(t)| + \rho C_M V \frac{\partial u(t)}{\partial t}
\]

\[
.. (11)
\]

ここで、\(C_D \)：抗力係数
\(C_M \)：質量係数
\(A \)：基準面積
\(V \)：基準体積
\(\rho \)：水の密度

そうすると式 (10) は次のようになる。

\[
\varepsilon = \frac{2TC_D \rho A u_0^2}{3\pi}
\]

(12)

いま、\(A(=h-H) \) を板の高さ、\(u_0 \) を板が無いと仮定したときの、入射波による板上端の位置での流速の最大値

\[
\frac{\pi H_I \cosh k(h-H)}{T \sinh kh}
\]

とすると、式 (12) は次のようになる。

\[
\varepsilon = \frac{2\pi^2 H_I^2(h-H) \rho C_D \cosh k(h-H)}{3T^2 \sinh^2 kh}
\]

(13)

あるいは、無次元化して

\[
\frac{\varepsilon}{E} = C_D \cdot \frac{\cosh k(h-H)}{\sinh^2 kh}
\]

(14)

と表わされる。ここに、\(H_I \) は入射波の波高

\[
E = \frac{2\pi^2 H_I^2(h-H) \rho}{3T^2}
\]
4. 考察および結び

2. で示した速度 ポテンシャルの取扱い方は、計算方法は異なるが、いままたにもいろいろな使われてきた。しかし、それらは数学的な取扱いに重きが置かれた、実際の現象との比較はあまりされていないので、ここで 3. のような考え方を示した次第である。

反射率と透過率の実験値を理論値と比較してみると、反射率はほぼ一致するが、透過率は小さい。このことは、実際にはこのような現象が起きているためではないだろうか。沖から来たエネルギーの一部は反射し、残りは通過と透過に別れる。透過エネルギーやは、板の付近でののはく離、渦の形成等によって生じ、その一部は粘性による消滅し、残りは質量輸送の形でずれるとの側（他の条件により異なるが大体同一の傾向）流れ出る。しかし、岸側に蓄積されたエネルギーは、ある大小さに達するとエネルギー勾配のため沖側に流れ出るだろう。実際水素発生装置を使い板付近の流れを観察してみると、周期や波高で形は異なるが、写真 1 に示すように、そこ

4. で示した速度 ポテンシャルの取扱い方は、計算方法は異なるが、いままたにもいろいろな使われてきた。しかし、それらは数学的な取扱いに重きが置かれた、実際の現象との比較はあまりされていないので、ここで 3. のような考え方を示した次第である。

反射率と透過率の実験値を理論値と比較してみると、反射率はほぼ一致するが、透過率は小さい。このことは、実際にはこのような現象が起きているためではないだろうか。沖から来たエネルギーの一部は反射し、残りは通過と透過に別れる。透過エネルギーやは、板の付近でののはく離、渦の形成等によって生じ、その一部は粘性による消滅し、残りは質量輸送の形でずれるとの側（他の条件により異なるが大体同一の傾向）流れ出る。しかし、岸側に蓄積されたエネルギーは、ある大小さに達するとエネルギー勾配のため沖側に流れ出るだろう。実際水素発生装置を使い板付近の流れを観察してみると、周期や波高で形は異なるが、写真 1 に示すように、そこ
垂直板による波の反射率・通過率およびエネルギー損失

(a) $t=0$ sec
(b) $t=0.25$ sec
(c) $t=0.62$ sec
(d) $t=0.83$ sec
(e) $t=0.92$ sec
(f) $t=1.33$ sec
(g) $t=1.67$ sec
(h) $t=1.83$ sec

$T=2.05$ sec, $H_I=0.65$ cm, $h=30$ cm, $H=10$ cm

写真1-1
で形成される溝は沖側と岸側では必ずしも対称でない。このような非定常流中の溝の発生をモデル化できると
さらにくわしくエネルギー損失を計算できるであろう
が、ここではもっと巨視的に、抵抗係数を使って計算し
てみた。

最後に、今回の実験は東京工業大学学生 職研究三君
の協力によって実施されたものであり、ここに謝意を表
する。

参考文献
1) Bartholomeusz, F.F. (1958) : The reflexion of long
2) Dean, W.R. (1945) : On the reflexion of surface
Phil. Soc. 41, 231.
3) Evans, D.V. (1970) : Diffraction of water waves by
a submerged vertical plate, J. Fluid Mech. Vol. 40,
433.
4) Havelock, T.H. (1929) : Forced Surface-Waves on
Water, Phil. Mag. 8, 569.
5) 日高考次 (1941) : 積分方程式論，河出書房
6) John, F. (1948) : Waves in the presence of an incl-
ined barrier, Comm. Pure Appl. Math. 1, 149.
Cambridge Univ. Press.
8) Mei, C.C. & Black, J.L. (1969) : Scattering of sur-
face wave by rectangular obstacles in waters of finite
depth, J. Fluid Mech. 38, 3
9) Miles, J.W. (1967) : Surface-wave scattering matrix
over an infinite step, J. Fluid Mech. 23, 2
11) Takano, K. (1966) : Effet d'un obstacle de parallélé-
pipède rectangle sur la propagation de la houle, J.
12) Ursell, F. (1947) : The effect of a fixed vertical ba-
Phil. Soc. 43, 374.
rigid vertical thin barrier, J.W.H. Div., Proc. ASCE.
86, wwl. 2413. March.

(1970.12.2・受付)