薄肉はり要素の有限変位微小ひずみ問題としての一定式化

A THEORETICAL FORMULATION OF THIN-WALLED BEAM ELEMENTS WITHIN SMALL STRAINS UNDER FINITE DISPLACEMENTS

阿井正博*・西野文雄**
By Masahiro AI and Fumio NISHINO

1. はじめに

いわゆる一次元構造要素の中で最も複雑な挙動を示し、最も多く生じる変位パラメーターを含むものとしては薄肉はり要素を考えるのが普通であるが、曲げせん断変形の一般的な扱いを除いて微小変位問題としてのその基礎方程式はすでに確立された種がある[1]〜[3]一方、有限変位問題としての基礎方程式についてはいまなお報告が続いてい

本報告は、任意に有限変位とする曲げせん断変形を含まない薄肉はり要素の基礎方程式を、変位の大きさを制限することなく誘導することを目的としている。すなわち倉方は、単位に比較して十分小さいものとして、有限変位微小ひずみ理論としての展開を行っているが、その中には断面の反りに伴う断面内の相対的な変位を考慮することも含めている。薄肉はりの一次元化での変位パラメーターはこれまでのものと同じに4つであるが、その具体的な定義をはよりの初期形状とは無関係に行い、変位に対しては初期形状をも含めた薄肉はりの空間形状そのものに運動場を適用することにより、初期形状に依存しないより一貫した有限変位理論としての基礎方程式を定式化している。その有限変位問題の扱いに関する立場は、最後にまとめとして述べている。つり合い式は仮想仕事の原理より誘導しているが、運動場を用いる場合でこれまで一般的であった変位パラメーターの変位を独立の仮想変分量とするのではなく、数学的に他の形で変換された独立変分量を採用することにより重複な変分演算を避けた展開を行って対応するつり合い方程式を求めてい
2. 空間伸長曲線の微分幾何

空間に右手系直交デカルト座標 \(x, y, z\) を考え、その単位基ベクトルを \(\{i(xyz)\} = \{i_x, i_y, i_z\}\) と表わす。空間で変形する曲線（G-線）が、\(\zeta\) をパラメータとして、

\[
r_G(\zeta) = \langle x_G(\zeta), y_G(\zeta), z_G(\zeta) \rangle |_{(xyz)} \quad (1)
\]

と表わされるものとする。このとき、独立変数\(\zeta\)は、初期状態において、

\[
(x_G^0)^2 + (y_G^0)^2 + (z_G^0)^2 = 1 \quad (2)
\]

を得る。すなわち、初期状態での曲線の実長に沿う物体固定座標として定義されているものとする。ここに、記号（）は初期状態での物理量を、記号（）'は \(\zeta\) に関する微分を意味しており、（）および {} の記号はそれぞれベクトルと列ベクトルを表わす。これ以後、変形の前後を特に断わらない限り変形後の物理量を意味するものとする。

G-線の伸び率 \(\varepsilon_G\) および微分幾何学でいうところの曲率半径 \(\rho_G\) は、

\[
\varepsilon_G = \rho_G / r_G = 1 - (x_G^0)^2 + (y_G^0)^2 + (z_G^0)^2 = 1 \quad (3-a, b)
\]

と表わされる。ここに、記号（）'は曲線の実長に沿う微分を表わす。G-線上の点の仮法線、主法線および接線方向の単位ベクトルをその順に \(\{i_G(z_G)\} = \{i_G, i_{\alpha}, i_{\beta}\}\) とすれば、

\[
\{i_G, i_{\alpha}, i_{\beta}\} = \{\rho_G \hat{r}_G \times \hat{r}, \rho_G \hat{r}, \hat{r}_G\} \quad (4)
\]

と表わすことができる（Fig. 1）。前式に式（1）を代入して展開すれば、回転変換 \(i_{(xyz)} = [T_G(\zeta)](i_{(xyz)})\) の直交マトリックス \([T_G]\) は、\(\{x_G, y_G, z_G\}\) に関して、

\[
[T_G(x_G, y_G, z_G)]
\]

と表わされる。ここで、G-線の \(\zeta\) 座標に関するねじれ率 \(a_G^0\) と曲率 \(\beta_G^0\) を

\[
a_G^0 = (1 + \varepsilon_G) / \rho_G, \quad \beta_G^0 = (1 + \varepsilon_G) / \rho_G \quad (7a, b)
\]

と定義するものとする。

式（1）の \(r_G(\zeta)\) の \(\zeta\) に関する 1 階微係数の値が

\[
\delta r_G' = \delta x_G(\zeta), \delta y_G(\zeta), \delta z_G(\zeta) \quad \{i_G(z_G)\}
\]

と表わされる。ここで、G-線の \(\zeta\) 座標に関する微分率 \(a_G^0\) および \(a_G^0, \beta_G^0\) の変化を考える。式（3-a）の変換より、

\[
\delta a_G = \delta r_G / (1 + \varepsilon_G), \quad \delta \beta_G = \delta r_G / (1 + \varepsilon_G) \quad (9a)
\]

であり、式（7-b）の変数は、式（3-a）および \(r_G'' = \langle \delta a_G', \delta \beta_G', \delta \tau_G' \rangle\) で定義するものとする。

式（1）の \(r_G(\zeta)\) の \(\zeta\) に関する 2 階微係数の値が

\[
\delta r_G'' = \delta a_G'' + d \frac{d}{d \zeta} \left(\frac{\delta \beta_G'}{1 + \varepsilon_G} \right) \quad (9b)
\]

として求まる。単位ベクトル \(i_G(z_G)\) の変化は次のように求められる。\(i_G\) は、式（4）、（9-a）を用いて展開すれば、

\[
\delta i_G = \frac{\varepsilon_G}{1 + \varepsilon_G} \left\{ d \frac{d}{d \zeta} \left(\frac{\delta a_G'}{1 + \varepsilon_G} \right) - \frac{\delta \beta_G'}{1 + \varepsilon_G} \right\} i_G
\]

と表わされる。\(i_G\) は、式（4）、（9-a, b）、（10）を用いて、

Fig. 1 Tangent, Principal Normal and Bi-Normal Directions of G-Line.
薄肉はり要素の有限変位微小ひずみ問題としての一元式化

\[-\frac{\delta \beta}{1+\epsilon_G} i_G\]

と表される．以上の結果と任意の直交単位ベクトル \(i_1, i_2, i_3\) における変分関係 \(\delta i_1 \cdot i_2 = -\delta i_2 \cdot i_1\) \((i \neq j)\),
\[= 0\] \((i = j)\)を考えれば，\(\delta [i_G(\tau_G)] = [\delta \Phi_G] [G(\tau_G)]\) と表すものとして，マトリックス \([\delta \Phi_G]\)は，

\[
[\delta \Phi_G] = \begin{bmatrix}
0 & & & \\
\frac{\rho_G}{1+\epsilon_G} \left\{ \frac{d}{d\zeta} \left(\frac{\delta a}{1+\epsilon_G} \right) - \frac{\delta \beta}{\tau_G} \right\} & & & \\
\frac{\rho_G}{1+\epsilon_G} \left\{ \frac{d}{d\zeta} \left(\frac{\delta a}{1+\epsilon_G} \right) - \frac{\delta \beta}{\tau_G} \right\} & & & \\
0 & & & \\
-\frac{\rho_G}{1+\epsilon_G} \left\{ \frac{d}{d\zeta} \left(\frac{\delta a}{1+\epsilon_G} \right) - \frac{\delta \beta}{\tau_G} \right\} & & & \\
\frac{\delta \beta}{1+\epsilon_G} & & & 0
\end{bmatrix}
\]

と表される．ねじれ率 \(\epsilon_G\)の変分は，式（6）と（11）を用いて展開すれば，

\[\delta \epsilon_G = \delta (i_G \cdot i_G) = \frac{d}{d\zeta} \left(\frac{\delta a}{1+\epsilon_G} \right) - \frac{\delta \beta}{\tau_G} \]

として得られる．

以上の結果において，伸び率 \(\epsilon_G\)が十分小さい場合には单位に比較してそれを無視することができる．

3. 薄肉はりの一次元化

伸び，曲げおよびねじれを受けて有限変位変する薄肉曲線はりの運動場を以下の仮定のもとに導く．

(1) はりに生じるひずみ成分はいずれも単位に比較して十分小さい． (2) はりの断面はその面内にひずみが生じない． (3) はりの軸方向に平行で薄肉中心面に垂直である面内にはせん断ひずみが生じない． (4) 薄肉はりの開断面部で薄肉中心面内にせん断ひずみが生じないものとし，開断面部では同面内でいわゆるせん断流によりせん断ひずみを考えるものとする．

本文では，開断面と開断面の薄肉はりを扱うが，簡単のために，1室開断面で開断面全体を代表させるものとする．有限変位運動場を扱う際には，外力・制御変位の作用していない薄肉はりの無応力状態を初期状態と仮定すると，初期状態に特定の外力を作用させることにより得られる伸び，曲げおよびねじれのない直線形状を基準状態とよぶものとする.

薄肉はりの幾何形状を記述するのにFig.2 に示す3組の座標系を考える．空間座標としては，②で用いた直交デカルト座標 \((x, y, z)\)を考える．横の1つの軸線を \(G\)線として，初期状態での \(G\)線の実長に沿って物体固定座標 \(\hat{\zeta}\)を定義するものとし，②での \(G\)線に関する記述を以下に採用する． \(G\)線の法平面内で \(G\)点を原点とする直交座標 \(\xi, \eta\)を後述のように定義する．

以上1組の物体固定座標として，基準状態での断面の薄肉中心面の長さに沿って \(s\)座標を，その法線方向に \(n\)座標を定め， \(G\)線の法平面内の \(3\)組の座標系 \((x, y, z), (\xi, \eta, \zeta), (s, n, \zeta)\)は，いずれも右手系として定義されるものとする．

断面形状は基準状態で長手方向に一致であるものとし，\(s\)座標をパラメータとしたものである．

薄肉中心面の形状： \((z^*(s), \eta^*(s))\)は薄肉中心線上での物理量を意味する．

\(G\)線を式（1）で記述する \(\{x_G(\zeta), y_G(\zeta), z_G(\zeta)\}\)は軸線の空間形状を規定する変位パラメータであるが，ある1つの変位パラメータとして断面の回転パラメータ \(\varphi(\zeta)\)を次のように定義するものとする．

\(G\)線の単位ベクトル \((i_G, i_G, i_G)\)を軸線まわりで \(\varphi(\zeta)\)回転させた単位ベクトルを \(\{i_G, i_G, i_G\}\)と表すものとし， \((i_G, i_G, i_G)\)を前の \((\xi, \eta, \zeta)\)座標の基準ベクトルとして対応させることにより断面の回転自由度を導入し， \(G\)線に固定された座標系 \((\xi, \eta, \zeta)\)を定義するものとする．

以上の4つの変位パラメータの設定は，ケーブルを充実円形断面の弾性体とみなした島田の展開が基本的で，同一である．変換 \(i_G(\tau_G) = [T_\zeta(\zeta)] i_G(\tau_G)\)を規
定する直交マトリックス \([T_\phi]\) は、
\[
[T_\phi(\phi(\xi))] = \begin{bmatrix}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
と表わされる。断面内の点から \(s\), \(t\)-軸までの距離 \(\{R_s, R_t\}\) は、
\[
\{R_s, R_t\} = [T_\phi]^T [\xi, \eta]
\]
を用いて与えられる。

\[\{x_G, y_G, z_G, \phi\}\] は長手方向に連続する断面の全体的な

空間位置を規定する変位パラメーターであるが、次の \(\{\xi, \eta\}\) 座標に関する断面上の基準状態からの相対的

変位を \(u(s, n, \zeta) = \int_0^\zeta [T_\phi(\xi)] [\xi, \eta] \) と

表わすものとする。 \(u\) は絶対の変位で、\(u, v\) を特に面内の相対変位とよぶものとする。これの相対変位は、

与えられた断面形状に対して、仮定 ii) のとき

\(\theta\) と \(\theta\) のときに表わされる。

基準状態での \(s\)-座標

方向と \(\xi\)-軸とのなす角度を \(\theta(s)\) とすれば、

薄肉任意点の \(s\)-座標の

微小増分による実長の

変化 \(ds\) が \(ds = (1-

n - d\delta_\theta)/ds\) であるこ

とより \((\text{Fig. 4}), \{\xi, \eta\})\) と

また \((\text{Fig. 4}), \{\xi, \eta\})\) と

\(s, n\) の従関係は、

\[
d\begin{bmatrix}
\xi \\
\eta
\end{bmatrix} = \begin{bmatrix}
(1-nd\theta)/ds \cos \theta & -\sin \theta \\
(1-nd\theta)/ds \sin \theta & \cos \theta
\end{bmatrix}
\begin{bmatrix}
s \\
n
\end{bmatrix}
\]

と表わされる。\([T_\phi(\xi)]\) から \([T_\phi(\xi)]\) への変換マトリックス \([T]\) = \([T_\phi]\) の \(\xi\) に関する微係数を \(d[T]/

\(d\zeta = \begin{bmatrix} \phi \end{bmatrix} d[T]\) 形で表わすものとする。式 \((6), (13)\)

を用いて展開することにより、マトリックス \([\phi]\) は、

\[
[\phi] = \begin{bmatrix}
\alpha & \gamma & \beta \\
\beta & \gamma & \alpha \\
\gamma & \alpha & \beta
\end{bmatrix}
\]

として求まる。\([T_\phi(\xi)]\) が前述の意味で断面に固定され

た単位ベクトルであることより、\((\alpha G + \phi)\) は \(\xi\)-座標

に関する断面のねじれ率、\(\beta G' \sin \phi, \beta G' \cos \phi\) はそれぞれ

\(\xi, \eta\)-軸方向への断面の曲率を表わすことになる。

式 \((16), (17)\) を用いて式 \((15)\) の \(r(s, n, \zeta)\) を \(s, n, \zeta\) で微分することにより、基底ベクトル \([\{G(i, t, e)\}\)

に関して、

\[
g_s = \frac{d}{ds} g_s \sin \theta + \frac{d}{dn} g_{\phi} \sin \xi,
\]

\[
g_n = \frac{d}{dn} g_s \cos \theta + \frac{d}{dn} g_{\phi} \sin \xi
\]

と表わされ、それらの内積により計量テンソル \(g_{ss}, g_{sn}, g_{nn}, g_{sz}, g_{sz}, g_{nn}\) を得ることができる。

薄肉はリの幾何形状に関しては次のような設定を考える。薄肉はリの幾何形状の次元は、はり長さ \(l\) に代表される

軸線方向の次元 \(\sim 2G(\hat{\theta}\hat{\xi})\) と断面寸法の次

元 \(\{\xi, \eta\} \sim \{R_s, R_t\} \sim (\hat{\theta}\hat{\eta})\) および薄肉の

内厚 \(\epsilon\) とよりなるが、\(\epsilon\) を仮定 i) の微小ひずみの条件

のもとで許されるひずみの大きさとして、

\[
\left(\frac{R_s}{R_t}\right)^2 \sim \frac{l}{R_s} \sim \epsilon
\]

程度の関係を薄肉はリの幾何形状について設定するものとする。次に、薄肉はリの伸び、曲りおよびねじれの大

きさと前述の次元の間に、開断面はリと開断面はリの

それぞれに対して次のような関係が成立することを仮定する。

\[
\epsilon_G \sim R_s \beta G' \sim \epsilon \sim \epsilon_G
\]

程度の関係が保たれ、\(u, v, w\) について、反り \(w\) が

\(w \sim R_s \beta G' \sim \epsilon_G\)

の大きさであり、面内成分は \(w\) に比較して小さく

\(w, \beta G' \sim \beta G' \sim \epsilon_G\)

の関係について想定する。この場合、\(u, v, w\) の

大きさは、

\[
\epsilon_G \sim \epsilon_G \sim \epsilon_G \sim \epsilon_G
\]

となる。

\[
\epsilon_G \sim \epsilon_G \sim \epsilon_G \sim \epsilon_G
\]

の関係が保たれ、相対変位については式 \((21), (22)\) が

開断面と同様に成立するものを想定する。この場合、
薄肉はり要素の有限変位微小ひずみ問題としての一定式化

\[v(s, n) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n = \rho_n^* = \text{const.} \]

\[g_{sx}^* = (1 - \frac{1}{md_s/ds})^2, \quad g_{sn}^* = 1, \quad g_{su}^* = 0 \]

\[d \left\{ \begin{array}{c} \rho_n^* \\ -\rho_s^* \\ \rho_n \\ -\rho_s \end{array} \right\} = \left[\begin{array}{cc} -\rho_s^* & 0 \\ 0 & 1/\omega^2 \end{array} \right] \left\{ \begin{array}{c} s \\ \rho_n \\ -\rho_s \end{array} \right\}

\[\omega(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（24-a〜c）

\[g_{sx}^* = (1 - \frac{1}{md_s/ds})^2, \quad g_{sn}^* = 1, \quad g_{su}^* = 0 \]

\[\rho_n = \rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]

（28-a, b）

\[w(s, n, \zeta) = -(aG' + \phi') W(s, n) \]

\[W(s, n) = \int_0^1 \left[\frac{\rho_s^*}{1/\omega} \right]_{\text{closed}} ds \]

\[\rho_n^* = \text{const.} = \frac{1}{l/\omega} \]

\[\rho_n^* = \text{const.} = 0 \]
12
d

\(\frac{\partial U_n}{\partial n} = \frac{1}{2} n^2 \)
\[= \frac{1}{2} \left(1 - n \frac{d\theta}{ds} \right) \rho_n (s) n^2 \]

\[\left(1 - n \frac{d\theta}{ds} \right) \frac{\partial U_s}{\partial n} - \left(\frac{d\theta}{ds} \right) U_s + \frac{\partial U_n}{\partial s} \]

\[= \rho_n \left(1 - n \frac{d\theta}{ds} \right) \rho_n (s) n^2 \]

\(\cdots \cdots (33\cdot a~c) \)

書き換えられる。\(\rho_n \) が \(n \) に関して一定であることを
つまり、式 (33-b) を \(n \) に関して積分すれば \(U_n (s, n) = U_n^* (s) + \rho_n n/2 \) となり、式 (33-a, c) に代入して \(n \)
に関する高次項を無視すれば、

\[\frac{\partial U_s}{\partial s} - \frac{d\theta}{ds} U_n^* = \frac{1}{2} \rho_n n^2 \]

\(\cdots \cdots (34\cdot a, b) \)

が得られる。式 (34-a) の左辺第 2 項と右辺が \(s \) のみ
の関数であることより \(U_n^* (s) \) も \(s \) のみの関数であり、式
(34-b) の左辺第 1 項を消去して \(s \) に関して積分すれば
\(U_n^* (s) \) が求まる。そして、\(U_n^* \) を式 (34-a) に代入し
て \(s \) に関して積分すれば \(U_n^* (s) \) が求まる。\(s = 0 \) で \(U_n^* \)
= \(U_n^* = 0 \) としたときの面内相対変位のモードは、

\[U_n(s) = \int_{0}^{s} \rho_n (s) \left(\frac{1}{2} \rho_n (s) \theta (s) \right) ds \]

\[= \int_{0}^{s} \rho_n (s) \rho_n (s) ds \]

\[= \rho_n \left(1 - n \frac{d\theta}{ds} \right) \rho_n (s) n^2 \]

\(\cdots \cdots (35\cdot a, b) \)

として得られる。式 (31), (32), (35-a, b) により薄肉
開断面は \(s \) の面内相対変位 \(u(n, s, n, \zeta) \) は
定まり、断面のねじれの変化に比例して生ずることと
なる。

以上のような面上の相対変位 \(u, v, w \) を式 (15) に代入
すれば、\(r(s, n, \zeta) \) は \(\{x_G(s), y_G(s), z_G(s), \zeta(s) \} \) を
独立変位パラメーターとして、

\[r(s, n, \zeta) = \left(\frac{\partial U_s}{\partial s} \right) \frac{dU_s}{ds} \]

\(\cdots \cdots (36) \)

5. 仮想仕事の式と面内相対変位

仮想仕事の原理より仮想変位式と力学的境界条件
式を導く。運動場が導入された系の必要十分な自由度
仮想変位が一般に変位パラメーターの変分により与えられ
るが、自由度を同じに保つものとすれば他の形に変換
された独立変位を採用しても変分問題における本質的
な機能は変わらないものと考えられる。本文では、G 線
の空間位置 \(r_G(s) \) の \(\zeta \) に関する微係数の変分を \(\delta \).
述べた式 (8) のように表現するものとし、

\[\delta a(s), \delta b(s), \delta c(s) \]

と \(\delta x_G(0), y_G(0), z_G(0) \) と \(\delta x_G(s), y_G(s), z_G(s) \) と同様の機能を果たせるとする。

\[\delta a(s), \delta b(s), \delta c(s) \]

\(\delta x_G(0) \),
\(\delta y_G(0), \delta z_G(0) \) を仮想変位を表す独立変数量として採用する。

変換マトリクス \(\delta \hat{T} = [T'] [T_G'] \) の変分は、式 (11) の \(\delta \hat{T} \) と式 (13) の \(\hat{T} \) の変分より、微小ひずみの条件のもとで、

\[
\delta \hat{T} = [T']
\begin{bmatrix}
0 & -\rho_G (\delta \alpha' - \delta \beta/\tau_G) + \delta \varphi, -\delta \alpha \\
-\rho_G (\delta \alpha' - \delta \beta/\tau_G), 0 & -\delta \beta \\
\delta \varphi & 0
\end{bmatrix}
[T_G] \quad \text{………………… (39)}
\]

と展開することができる。式 (9・c) のねじれの変分と式 (39) を用いれば、式 (36) の運動の変分は、独立変分量に関して微小ひずみの条件のもとに、

\[
\begin{align*}
\delta r(s, n, \zeta) &= \langle \delta x_G(0), \delta y_G(0), \delta z_G(0) \rangle \{i_{(xyz)} \} + \int_0^l \left[\langle \delta \alpha, \delta \beta, \delta \gamma \rangle \{i_{(xyz)} \} d\zeta + \left\{ R \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) - \delta \varphi \right] - W \left(\alpha_G' + \varphi' \right) \delta a, -R \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) - \delta \varphi \right] - W \left(\alpha_G' + \varphi' \right) \delta a, -R \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) - \delta \varphi \right] - W \left(\alpha_G' + \varphi' \right) \delta a \right\} d\zeta \right] \\
&+ \langle 0, 0, -W \rangle \left[\left(\frac{\delta \alpha}{\rho_G} \frac{d}{d\zeta} \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) - \delta \varphi \right] \right) + \delta \varphi \right]] \{i_{(xyz)} \} \\
&+ \langle 2(\alpha_G' + \varphi'), -U_r, -U_s, 0 \rangle \left[\left[\frac{\delta \alpha}{\rho_G} \frac{d}{d\zeta} \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) - \delta \varphi \right] \right] + \delta \varphi \right] \{i_{(xyz)} \} \\
&+ \langle \alpha_G' + \varphi', -U_r, -U_s, 0 \rangle \left[\left[\frac{\delta \alpha}{\rho_G} \frac{d}{d\zeta} \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) - \delta \varphi \right] \right] + \delta \varphi \right] \{i_{(xyz)} \} \\
&= \left[\begin{array}{c}
\delta \varphi & 0 & \delta \alpha \\
\delta \beta & -\delta \alpha & 0 \\
-\delta \varphi & 0 & \delta \beta
\end{array} \right] \{i_{(xyz)} \} \quad \text{O.B.}
\end{align*}
\]

と表わすことができる。ただし、前式中の \(\{ U_r, U_s \} \) は \(\{ U_r, U_s \} = \{ i_{(xyz)} \} \{ U, V \} \) で表わされる \(r, \zeta \) 方向の面内相対変位モードである。

式 (14) の変分演算より \(\delta (R_r, R_s) = \langle -R_r, -R_s, 0 \rangle \delta \varphi \) であることと式 (9・a～c) で表わされる \(G \) 線の規格量の変分を用ければ、式 (37・a, b) のひずみ成分の変分量は、

\[
\begin{align*}
\delta e_{zz} &= \delta r - R_s \delta c \delta \varphi - R_s \left(\frac{\delta \alpha}{\tau_G} + \delta \beta' \right) - W \frac{d}{d\zeta} \\
&+ \left[\frac{\delta \alpha}{\rho_G} \frac{d}{d\zeta} \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) + \delta \varphi \right] \right] \\
&+ \left(\alpha_G' + \varphi' \right) \left[\frac{\delta \alpha}{\rho_G} \frac{d}{d\zeta} \left[\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) + \delta \varphi \right] \right] \\
&+ \left(\rho_G \left(\frac{\delta \alpha' - \delta \beta}{\tau_G} \right) + \delta \varphi \right) \{i_{(xyz)} \} \quad \text{O.B.}
\end{align*}
\]

と表わされる。

仮想仕事の式は、式 (20・a, b) が成立する範囲で、すなわち微小ひずみの条件の範囲で、

\[
\int_0^l \int_A \left[\sigma_{zz} \Delta e_{zz} + 2 \sigma_{zz} \sigma_{zz} \right] (d \text{area}) d\zeta = \int_0^l \int_A \left\{ [\tilde{p}^d \cdot \delta r] (d \text{area}) d\zeta \\
+ \int_A \left[[\tilde{q}^d \cdot \delta r] (d \text{area}) \right] \right\} = \int_0^l \int_A \left[[\tilde{p}^d \cdot \delta r] (d \text{area}) d\zeta \\
+ \int_A \left[[\tilde{q}^d \cdot \delta r] (d \text{area}) \right] \right\} = \int_0^l \int_A \left[[\tilde{p}^d \cdot \delta r] (d \text{area}) d\zeta \\
+ \int_A \left[[\tilde{q}^d \cdot \delta r] (d \text{area}) \right] \right\} \quad \text{………………… (42)}
\]

と表わすことができる。ここに、\(A \) は薄肉はりの断面積であり、\(\sigma_{zz}, \sigma_{zz} \) はひずみテンソル \(\varepsilon_{zz} \), 2 \(e_{zz} \) に対応する応力テンソル成分、\(\tilde{p}^d \) は \(ds \times dn \times \zeta \) の単位当たりに作用する体積力、\(\tilde{q}^d \) は端面 \(\zeta = 0 \) で \(ds \times dn \) の
ここに、記号(*)は、\(\{ \theta(\alpha, \beta, \gamma) \} \)や\(\{ \theta(\alpha, \beta, \gamma) \} \)の未知の基礎ペクトルに関する成分表示であることを意味する。端面の表面力もまた\(\{ q^*(xyz) \} \)の成分表示が考えられる。\(\{ q^*(xyz) \} \)を用いて式（45a～j）と同様にして一般化外力 \(\{ M(\alpha), \{ M(\beta), \{ M(\gamma) \} \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \} \), \(\{ M(\gamma) \} \), \(\{ M(\alpha) \} \), \(\{ M(\beta) \)
\[M_W|_{\zeta=0, \varphi=t} = (M_W + (M_W U(a_G' + \varphi')) o. b.) \zeta = 0 \]
\[\{F(z), F_y(z), F_z(z)\} = \{F_1, F_2, F_3\} \]

ただし、前式中の \(T \) は、
\[T = M_W' + T_S + (K(a_G' + \varphi')) o. b. \]
\[+ (m_W' + (m_W U(a_G' + \varphi')) o. b.) \]

を表わす。

式 (49・a, b), (50・a, b), (51) に含まれる記号 (*) を付した一般化外力は未知の単位ベクトルに関する成分表示であり、体積力、表面力の空間座標成分が既知量として与えられる場合での変換関係を次のように表わすことができる。

\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} \]
\[\{m(u, v, w)\} = \{m(u, v), m(w)\} \]
\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} \]

と定義するものとし、変換マトリックス \(\hat{T} = [T] \)
\([T]_z \) の \(x, y, z \) 方向に対応する列ベクトルを \(\{T\} \), \(\{T\} \) と表わすものとすれば、\(\{T_{(x,y)}\} \) に関する一般化分布外力は、

\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} \]
\[\{m(u, v, w)\} = \{m(u, v), m(w)\} \]
\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} \]

\[m_W = 2(<T>, m_{(u, v, w)}) \]

と表わすことができる。ここに、式 (53・a, b) 右辺の行列式の演算は三次元ベクトルの内積を考えるものとする。また、\(\{m_{(x,y,z)}\}, \{m(u, v, w)\} \) などについて同様に定義すれば、端面の一般化外力を式 (53・a, b) と同様に表わすことができる。

薄肉はりのつり合いを幾何学的に考えるに Fig. 5)、\(\zeta = 0 \) の端面で作用する力を \(F_\zeta \), \(\varphi \) 座標に関する分布外力、分布モーメント外力を \(p(\zeta), \tilde{m}(\zeta) \) として、任意断面で作用する力 \(F(\zeta) \) およびモーメント \(M(\zeta) \) に関するつり合い式は、

\[F(\zeta) = F_\zeta - \int_0^\zeta p(\zeta) d\zeta \]
\[dM(\zeta) = r_G + F(\zeta) + \tilde{m}(\zeta) = 0 \]

と表わされる。式 (49・a, b) と (51) のつり合い式に含まれる含応力と一般化外力を次のように物理的に解釈すれば、式 (54・a, b) と式 (49・a, b) は微小ひずみの条件のもとに一致する。

\[N = \text{断面の軸力}, \{M(\varphi), -M(\varphi), T\} = \text{断面に作用するモーメントの} \{i_G(\varphi)\} \text{に関する成分, } M_W = \text{パイ・モーメント, } T_S = \text{St. Venant のねじるモーメント, } K = \text{St. Venant のねじるモーメント, } \]

ここで、\(i_G \) 方向から \(\zeta \) の向きによって生ずる軸線まわりのモーメントを表わす。

\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} = \text{断面の相対変位がないときの体積力} \text{がつく} \{i_G(\varphi)\} \text{まわりの分布モーメント外力,} \]
\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} = \text{断面に作用する外力の変分,} \]
\[\{m_{(x,y,z)}\} = \{m_{(x,y)}, m_{(z)}, m_{(y)}\} = \text{面内相対変位} \{u, v\} \text{により生ずるモーメント外力の変分,} \]
\[m_{(x,y,z)} = \text{分布パイ・モーメント外力,} \]
\[m_{(x,y,z)} = \text{面内相対変位によるパイ・モーメント外力の変分, これで, 薄肉はりの端面で作用する一般化外力も同様に理解することができる.} \]

力学的境界条件式 (50・a～c) に対応する幾何学的境界条件式は、

\[\{i_G(\varphi)\} = \{i_G(\varphi)\} \]

と表わすことができる。このとき、一般の境界条件は力学的条件と幾何学的条件の混合となるものと思われるが、この場合には個々に定式化される必要がある。

6. 合応力-ひずみ一般化関係
なら、s座標の原点を

$$
\int_A W(s, n) \, d(area) = 0
$$

となるように定めるものとする。このときの非零の断面係数を次のように定義するものとする。

$$
A = \int_A d(area), \quad I_{tt} = \int_A \eta^2 d(area), \quad I_{tt} = \int_A W_\xi d(area)
$$

$$
I_G = \int_A (\xi^2 + \eta^2) \, d(area)
$$

$$
I_{GG} = \int_A (\xi^2 + \eta^2)^2 \, d(area)
$$

$$
I_{tt} = \int_A (\xi^2 + \eta^2)^2 \, d(area)
$$

$$
I_{tt} = \int_A (\xi^2 + \eta^2)^3 \, d(area)
$$

$$
I_{tt} = \int_A \theta^2 d(area)
$$

$$
J_S = \int_A \theta^2 d(area)
$$

式（56-a）～（56）

式（37-a，b）のひずみ成分 ε_{zz}，ε_{z} に対して生じる応力テンソル成分は σ_{zz}，σ_{z} のみであり，E, G をそれぞれ弾性係数，せん断弾性係数として，

$$
\sigma_{zz} = E \varepsilon_{zz}, \quad \sigma_{z} = 2 G \varepsilon_{z}
$$

（57-a，b）

関係にあるものとする。

式（43-a～f）に式（37-a，b），（57-a，b）を代入して面積積分すれば，前述の断面係数を用いて合応力一般化ひずみ関係は次のように表わされる。

$$
\{\Sigma\} = E[D] \{E\}, \quad T_S = G J_S \{ (\varepsilon_{zz} + \varepsilon') \}
$$

（58-a，b）

$$
\{\Sigma\} = \{N, M_{zz}(s), M_z(s), M_W, (K) o.b \}
$$

$$
\{E\} = \{\varepsilon_G, [-\beta \varepsilon \sin \varphi], [-\beta \varepsilon \cos \varphi], \}

\quad [-(-\beta \varepsilon' \sin \varphi), [-\beta \varepsilon' \cos \varphi], \}

\quad \left(1/2, \varepsilon_{zz} + \varepsilon' \right)_{o.b}
$$

$$
[D] = \begin{bmatrix}
A, & 0, & 0, & 0, & I_G \\
I_{tt}, & 0, & I_{tt}, & I_{tt}, & I_{tt} \\
I_{tt}, & I_{tt}, & I_{tt}, & I_{tt}, & I_{tt} \\
\text{sym.}, & I_{tt}, & I_{tt}, & I_{tt}, & I_{tt}
\end{bmatrix}_{o.b}
$$

（59-a）～（59-c）

7. 応力分布

断面の直応力に関する合応力 $\{\Sigma\}$ が与えられれば，対称する $\{E\}$ は式（58-a）より $\{E\} = [D]^{-1} \{\Sigma\} / E$ と求められ，式（37-a），（57-a）に代入して直応力 σ_{zz} の

断面分布を知ることができる。同様にして，T_S が与えられれば式（37-b），（57-b），（58-b）より St. Venant のねじ返りモーメントをつくるせん断応力 σ_{zz}^R の分布を

知ることができるが，曲げせん断変形を考えない本文の展開では曲げせん断応力 σ_{zz}^R を構成方程式を介して求めることはできない。σ_{zz}^R の分布は，前述した直応力 σ_{zz} の分布に対して次のように近似的に表わすことができる。

薄肉はよりの $t \times d s \times d \zeta$ の微小要素を取り出しして（Fig. 6），z 方向の力のつもり合いを考えれば，

$$
\frac{\partial}{\partial s} \left(\int_{-t/2}^{t/2} \sigma_{zz} ds \right) + \frac{\partial}{\partial t} \left(\int_{-t/2}^{t/2} \sigma_{zz} ds \right) + \int_{-t/2}^{t/2} \rho_s d \zeta = 0
$$

（60）

が得られる。せん断応力 σ_{zz} を St. Venant のねじ返りモーメント σ_{zz}^R と曲げせん断応力 σ_{zz}^R の和で表わすものとすれば，前述したように $\sigma_{zz}^S = 2 G \varepsilon_{z} = T_S \theta / J_S$ であり，式（38）の $\theta(s, n)$ の関数形より σ_{zz}^S の n に関する薄肉上の積分は s に関して一定となり，

$$
\frac{\partial}{\partial s} \left(\int_{-t/2}^{t/2} \sigma_{zz} ds \right) + \frac{\partial}{\partial t} \left(\int_{-t/2}^{t/2} \sigma_{zz} ds \right) + \int_{-t/2}^{t/2} \rho_s d \zeta = 0
$$

（61）

が得られる。式（60）における σ_{zz} や ρ_s は断面で十分大きく変化するが，肉厚 t は断面寸法に比較して十分小さく，σ_{zz} と ρ_s の肉厚方向の変化が無視できるものとすれば，したがって，それらとつり合う σ_{zz}^R の同じ変化も無視できるものとすれば，式（60）は，

$$
\int_{-t/2}^{t/2} \sigma_{zz} ds \left(\int_{-t/2}^{t/2} \sigma_{zz} ds \right) + \int_{-t/2}^{t/2} \rho_s d \zeta = 0
$$

となり，s に関して積分すれば，

$$
\sigma_{zz}^R = \frac{1}{t} \left(\text{const.} - \int_{-t/2}^{t/2} \left(\frac{\partial \sigma_{zz}^S + \rho_s}{\partial \zeta} \right) d \zeta \right)
$$

（62）

と表わされることになる。ここに，const. は s に関す

る積分定数であるが，薄肉はよりの開断面部と開断面部と

で次のように対応する。

[開断面部]

薄肉断面の閉路上になく有限個の自由端に連続してい
Fig. 7 General Cross-Section.

類点（Fig. 7 の A, B 点等）を考えると、自由端で力学的条件より $\sigma_z^R = 0$ であり、注目する点と自由端までの全域の積分を考えて、

$$\sigma_z^R = -\frac{1}{t} \int_{t} \left(\frac{\partial
abla_z^2}{\partial z} + \rho_z^d \right) ds \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots (63)$$

と表わすことができる。ここに、総和 Σ は、注目する点と自由端で定まる領域内のすべての薄肉上の積分の和を意味する。

【断面形状】

Fig. 7 の C 点のこのような閉路上の点を考える。閉路上の確定点 $s = s_0$ を積分の始点とすれば、式 (62) は、

$$\sigma_z^R = \frac{1}{t} \left\{ \text{const.} - \int_{s_0}^s \left(\frac{\partial
abla_z^2}{\partial z} + \rho_z^d \right) ds \right\} \quad \cdots \cdots \cdots \cdots \cdots \cdots \cdots (63)$$

と書き換えることができる。右辺（）内の第 2 項は s_0 点から s 点までの閉路上の積分、第 3 項はその閉路区間を連続するすべての断面部の積分を意味する。本文での運動場では曲げせん断変形を拘束しているが、ここで $e_x^R = 0$ の拘束のみを解くものとし σ_z^R による微小なせん断ひずみを考えるものとする。厚さ d 的薄肉断面要素の G 点を固定支持して考えれば、e_x^R により周方向の変位 u_z^R のみを生じ、式 (63-b) 右辺の第 2 項以降を $\partial
abla_z^R$ と表わすものとして、

$$\frac{\partial u_z^R}{\partial z} = 2 e_x^R = \frac{1}{G} \left(\text{const.} - \partial
abla_z^R \right)$$

となり、閉路における u_z^R の適合条件

$$\int (\partial u_z^R/\partial s) ds = 0$$

より、

$$\text{const.} = - \int \partial
abla_z^R ds$$

が定まる。

8. 考察

（1）断面の回転自由度について

本文で用いている運動場での変位パラメーター \{ x_G, y_G, z_G, φ \} は、初期形状からの変化量ではなく、空間形状そのものを規定する量として定義されている。このとき、φ を、軸線の幾何形状に関するパラメーター \{ x_G, y_G, z_G \} で定まる断面の曲率方向からの回転角として定義しているため、曲率が零となる直線状で φ の基準が不確ととなり、基礎方程式の系がその意味で特異となる。しかし、これは物理現象自体の特異状態ではな

にパラメーターの設定に起こるものであり、曲率が零である区間および点での (i_G, i_G) の方向を理論展開に矛盾しない範囲で仮定することにより処理することができる[13]。

任意に有限変位する断面の問題では、物理的意味としての断面のねじれ率は一般に回転パラメーターの長手方向変形のみでは定まらず、他のパラメーターも関与する[13][14]。この場合、島田[15]、阿井ら[16][17]の前後のような回転パラメーターを設定すれば、断面のねじれ率は軸線のねじれ率と回転パラメーターの変化率の和として物理的に明確に表現される。

（2）微小ひずみの条件について

本文での展開は、微小ひずみの条件のもとに行っている。すなわち、薄肉はりの幾何形状について式 (19) を設定し、ひずみパラメーターに関して式 (20-a, b) が成立し φ が単位に比較して十分小さいことを仮定している。この条件は初期形状をも含めて適用されるため、本文では曲げを、直線形状に変形させたときに生ずるひずみが微小ひずみの条件を満足する範囲で扱っていることになる。

変分原理より基礎方程式を求める際、変分演算の前段階で微小ひずみの条件を適用した場合と変分演算後固定条件を適用した場合で結果が異なることが生じる[11]。微小ひずみの条件のもとでの基礎方程式としては後者の結果が相当するものと思われるが、それに関して次のように考察できる。変分原理とは系の関数の解析的性質を媒介とした原理であり、含まれる関数の値の大小に関係しない。関数の値は微小ひずみの条件のもとに簡略化した関数よりも求めても大きな差は生じないが、微小ひずみの条件のもとでの操作が関数関数の解析性（たとえば Holonomy という性質）を変えることが生じれば、その変分演算結果に不合理が含まれることが起こり得る。本文では式 (9-b, c), (11) で表わされる厳密な $\delta \sigma_{\alpha}, \delta \sigma_{\beta}, \delta \sigma_{\gamma}, [\delta \sigma_{R}]$ を求めた後、単位に比較して ϵ_0 を無視する操作をしている。

次に、本文では式 (37-a, b) のひずみの誘導において、式 (41-a, b) の変分演算の前に単位に比較して ϵ_0 より高次の項を無視している。変分演算の後に単位に比較して ϵ_0 より高次の項を無視するという前提のもとに、前述の変分演算前の高次項の無視は合理化される。すな
わち、仮想仕事の原理では汎関数の第1変分しか考えないことから、問題としている数式より e 以上高次の項は変分演算後の微小変分の条件で無視されるという理由で、変分演算の前に無視することができる。本文では式 (36) の運動方程式 (37a, b) のひずみ場に微小項に関する前述のような差異があるため、式 (49a, b), (50a～c), (51) のつり合い式と力学的境界条件式において、外力に断面の相対変位に関する一般化外力を含む一方、同様に生ずるはずの相対変位による合応力の変化分の項が含まれていないという不統一が生じている。基礎方程式を解く際には相対変位による外力項は無視されでも問題となる数値的差異は生じないと思われるが、5 で述べたように物理的には有意な点であることから式 (49a, b), (50a～c), (51) の段階ではその外力項を残した。

(3) 変分原理における独立変分量について

運動方程式導入された系の必要十分な自由度数の仮想変位は変位パラマスターの変分で与えられることができるが、同自由度であることを保つ他の変換された形の独立変分量を採用することができるものと思われる。仮想仕事の原理を用いれば運動方程式に対して統一性を保つつり合い式が提案結果として得られるが、有限変位理論でのその展開が極めて煩雑なものとなることは多い。本文では、変分演算を比較的簡易的に処理する目的で、5 で述べたような独立変分量を採用している。

この場合、変分演算の結果得られるつり合い式は、仮想変位の変換とは相補的な関係にある変換が行われた形式で示されるものと思われる。すなわち、変換された独立変分量と対応するつり合い式のつり合い量との内積が系の仮想仕事となるような形式で求まると思われる。このような変分演算の数学的変換は無限であるが、この中で、変分演算途中の物理的意味を明確にし処理を簡単にする等の有効な変換を採用することが重要である。

(4) 一次元構造要素一般の基礎方程式について

最も多くの変位パラメーターを含む一次元構造要素として、伸び変形、2 方向の曲げせん断変形、2 方向の曲げ変形、ねじれ変形および反り変形の 7 つ 1) の変位パラメーターで記述される曲げせん断変形を含む曲げねじれ要素を考える。このとき、この 7 つの変位パラメーターの構造要素において、曲げせん断変形を無限大とすれば曲げせん断変形に関する変位パラメーターは容易に導かれる。曲げせん断変形を含まない曲げねじれ要素が得られ、同様に考えて、反り剛性を無限大とすればいわゆる充実断面の曲げねじれ要素となる。このように考えれば、最も多くの変位パラメーターを含む構造要素の基礎式で一次元構造要素一般の挙動が説明されることになるが、これらの操作が基礎方程式の上で具体的に行われるためには、その基礎方程式が各構造要素に共通の記述方法のもとに表現されている必要がある。本文の薄肉はりの基礎方程式は、曲げせん断変形を含まない一次元構造要素一般に対してその条件を満たす。

たとえば、可撓性ケーブルの基礎方程式を次のように誘導することができる。本文の薄肉はりの基礎方程式において次の極限過程を考え、さらに作用する外力系において G 線に集中した分布外力

\[F(x) = \int_A [\tilde{F}(x,y)] d(area) \]

および端面の \(F(x) \) の変分を一定としたまま薄肉はりの断面寸法を限りなく零に近づける。式 (45a～b) の形で定義される一般化外力

\[m(x), m_W(x), \ldots, \]

および \(M(x) \) がそれぞれ \(F(x) \) より断面寸法に関じめて高次がいい、式 (56a～b) で定義される断面係数においても断面積 A に比較して他の断面係数は断面寸法に関じめてよい高次であることから、前述の極限過程においてそれらの一般外力、断面係数は限りなく零に近づく。

極限の結果でのつり合い状態において、ひずみパラメター \(\epsilon_x, \epsilon_y, \phi \) 等が有限値に保たれるものとすれば、断面の合応力 \(M(y), M_W, M_K, T_x, T_y \) は軸力 \(N \) に相対して零となる。

以上の結果を式 (49a, b), (51) のつり合い式で考えると

\[\{F(x), F_y, F_z\} = \{0, 0, 0\} \]

が得られる。 \(\tilde{F}(y,z) \) を変換マトリックス \([T] \) を用いて \(F(x,y) \) に変換して展開すれば

\[\frac{N}{1 + \epsilon_e} (x, y, z) - (F_x, F_y, F_z) = \{0, 0, 0\} \]

(65) として可撓性ケーブルのつり合い式が得られる。式 (58a, b), (59a～c) の構成方程式において、前述の極限過程の結果

\[N = EAr_0 \]

(66) のみが残る。同様に考えて、力学的境界条件と幾何学的境界条件は、

\[\{F(x,y,z)\} = \{F(x,y,z)\} \]

\[\{xG, yG, zG, 0\} = \{xG, yG, zG, 0\} \]

(67a, b)

ののみが残り、他の条件は退化する。

9. まとめ
微小変位理論と有限変位理論とは固体力学における1つの大きな区分である。連続体の変位後の幾何形状は変形前の初期形状に物質点の変位を加えて表現されるのがこれまでの普通であったが、微小変位理論では初期形状と変位とは次の意味で性質の異なる量として扱われる。微小変位理論では、変位により連続体中にひずみが生じ有限な応力が生じることを考えるが、変位が連続体の幾何形状を変えるという効果は反映されない。そのために、物体固有座標と空間座標を適切に区別する必要がある。連続体物質点の初期位置ベクトルと変位ベクトルは有限小の量として扱われることになり、基礎方程式に反映される幾何形状は変形の前後を問わず常に初期形状であるということができる。それに対して、有限変位を扱ういわゆる幾何学的非線形問題とは変位による幾何形状の変化を考慮する連続体の問題であり、基礎方程式が変形後の幾何形状に対して定式化されなければならないことは周知のところである。有限変位問題では、物質点の初期位置ベクトルと変位ベクトルは幾何学的意味において相対する量として扱われる。

微小変位理論としての基礎方程式は対応する有限変位問題の基礎方程式を変位に関して線形化することにより得られるが、任意の変形状態で線形化された系は狭義には線形化有限変位理論とよばれている。微小変位理論の系とは内部応力の生じていない初期状態において線形化された系に相当する。このことにより、線形化有限変位理論で扱われる変位増分の大きさは微小変位理論と同等に微小であると考えられるが、線形化された基礎方程式の中で変位増分が基準の状態での内力系と連成することにより生ずる幾何形状の変化を表わす項があるのである。その呼称があるものと思われる。

連続体の変形後の幾何形状が初期形状に変位を加えて表現されることは、微小変位理論を継続して有限変位理論が発展してきたことや有限変位理論といえども変位に関する非線形項を扱うのみで初期形状付近の変位が比較的小さな範囲を問題とする場合も少なくないからの場合に起因するものと思われる。一方、本来の初期形状を考慮することのできないナチュアルの問題では、従来より、つくり合い状態での物質点の空間位置そのものが基本の未知量として扱われている。

変位とはその基準の幾何形状と相まって空間位置を記述する量であり、空間位置を決定するという意味では初期形状に依存する量である。幾何形状の変化を考えない微小変位理論では、初期形状とはその理論展開の範囲での絶対的な形状であり、有限変位理論の立場からみて初期状態において変位に関して線形化された理論であることを考えると、変位を基本の未知量とする基礎方程式は線形系の定式化の合理性として疑えず、線形化有限変位理論では前述したような幾何形状の変化の項を含むが、基準状態まわりで線形化された系であることは微小変位理論と同様である。一方、有限変位問題における初期形状とは、連続体の有限変位後の種々の形状が作用外力・制限等に関する数値であると同様に、零の作用外力に呼応した幾何形状と考えてよく、そのことで特殊性のない状態である。確かに、連続体の問題の物理要素であるひずみ（たとえば Green のひずみテンソル）は変形後の計量テンソルの差で規定され、多くの場合で初期状態での物理量が既知量として扱われるが、そのことは連続体の幾何形状が初期状態を基準として表現されなければならない理由とは直接つながらない。有限変位理論としての基礎方程式とは有限変位問題の数値的処理系であり、その処理の内容が連続体の初期形状に左右される理由はない。すなわち、微小変位理論における初期形状とは、同時に変位後の形状であろう、基礎方程式が扱う物理要素の外にあるが、有限変位理論においては、その基礎方程式が任意の有限変位後の幾何形状を扱うのと同じ意味で初期形状の任意性もまた基礎方程式で扱われるべき物理要素であるように思われる。

連続体の幾何形状が Lagrange の手法において記述されるためには、定式化の最初で、空間座標が定義され、連続体の物質点は物体内固定座標と対応づけられなければならいない。幾何形状は、物体内固定座標で規定される物質点の空間座標を示すことにより記述されるが、その際に、空間座標が連続体の初期形状に依存させて設定されている有限変位問題の定式化が少なくない。たとえば、ひずみの問題の定式化において直接はりと曲線はりが区別され、曲線はりの変位を初期状態での軸線の接線方向とその法平面内の2方向に分解して表わすことは広く行われている。微小変位問題では、このような成分表示により基礎方程式が物理的に理解しやすく簡単になる場合が多く、その意味で正規化された表現といえる。しかし、有限変位問題においては、初期形状での接線・法線方向の成分表示は、変形後の形状に対しては接線・法線方向の成分ではない。そこで微小変位問題と同様の意味を見出すことはできない。さらに、変位の大きさを制限しない場合の有限変位問題では、前述の空間座標の座標値と空間座標の間に1対1の対応が一般にない。有限変位問題において当面問題となるのは変形後の幾何形状であり、変形前の幾何形状が基礎方程式の定式化における数学的表現の設定や記述方法に本質的に関与することは思われない。

本報告では、薄肉はりの有限変位微小ひずみ問題としての定式化を次の点に留意して行っている。空間座標としては、連続体の初期形状を無関係に点の空間位置を
規定するのに最も単純で扱いやすいという意味で直交デカルト座標を採用し、物体固定座標と物質点の対応づけもまた初期形状とは無関係に行っている。基礎方程式において、初期状態からの変位を未知数とするのではなく、物質点の空間位置そのものを基本の未知数とする。同様に考えて、運動方程式は、変位に適用するのではなく、初期形状を含めた空間形状そのものに適用している。以上のものとに定式化している本報告での薄肉はりの基礎方程式の系では、初期形状とは加えられる外力等と同等に有限変位問題の処理系に入力される単なるデータであり、基礎方程式という有限変位問題の処理系自体は初期形状に左右されることなく任意の入力データに対して一貫している。結果として、本報告で示している基礎方程式の上では、薄肉直線はりと薄肉曲線はりといった初期形状による定式化的区分はないことがある。

以上の議論は、板やシェル等の二次元構造要素に対してもまったく同様に適用されるものと思われる。

10. おわりに

本報告で述べている薄肉はりの有限変位問題としての基礎方程式は、その初期の段階14)において、断面のねじれに関する高次非線形項を含まないものであった。薄肉関断面はりの有限変位微小ずみ問題としてのそれに関するより高次の項を含める必要があることの指摘を、新日本技研（株）倉敷慶夫氏より受けた。その示唆は氏の薄肉はりの問題に対する深い理解によるものと思われ、氏の慧眼に助言に心より敬意と謝意を表するものである。

また、現名古屋大学土木工学科島田靜雄教授の論文“弾性係数の変形と応力”22)は薄肉はりの有限変位問題に関する文献としてはこれまで取り上げられることのなかったものであり、著者らが本論の理論展開を終えた後の別の議論の場でその存在を知り得た。その20年以前の著書に驚嘆なる敬意を表す次第である。

本報告の内容は、第一著者が第二著者のもとで作成した学位論文15)に基づいている。本論集用に一部説明を簡略化しており、細かい展開を含めることはできなかった。詳細の展開記述は文献15)を参照されたい。

なお、本研究は文部省科学研究費の補助を受けている。

参考文献

3) 西野文雄・深沢晴男：ひずみ場の定方から薄肉直線ばかりの静的挙動の定式化，土木学会論文報告集，No. 247, 1976.3.
4) 坂井恒一：薄肉関断面材の弾性安定基礎方程式の統一誘導，土木学会論文報告集，No. 221, 1974.1.
8) 西野文雄・倉方慶夫・長谷川彰夫・奥村敬恵：軸力と曲げおよびねじりを受ける薄肉断面材，土木学会論文報告集，No. 225, 1974.5.
9) 薄木正三：変形を考慮した薄肉断面円弧アーチの曲げ挙動，土木学会論文報告集，No. 263, 1977.7.
12) 倉方慶夫：薄肉関断面をもつ曲線部材の有限変位理論，東京大学工学系研究発表論文，1976.3.
14) 阿井正博・岩崎哲夫・西野文雄 : 1次元構造要素の幾何学的非線形問題における支配方程式について，土木学会第32回機械学講演会講演概要集，第1部，1977.10.
15) 阿井正博 : 1次元構造要素の幾何学的非線形問題について，東京大学工学系研究発表論文，1979.3.

（1980.4.28・受付）