遮水による非定常地下水の厳密解

STRCT SOLUTION OF UNSTEADY GROUNDWATER FLOW AROUND CUT-OFF WALL

佐藤 邦明*
By Kuniaki SATO

1. はじめに

最近、地下の大規模利用・拡大に伴って、地下帯水層中に遮水や土留めを目的とした仮、あるいは永久構造物の技術に著しい進展がみられる23,4。たとえば、地下連続壁、グラウト壁、矢板壁等の工作物が用いられ、恒久的な遮水や地下掘削・開削のためのみならず、地下水流の貯留のための地下ダムの堤体にも応用されている23,4。

ここでいう遮水とは、地下水流を遮るということであって、ダム体や堤体下部の浸透防止のための局所的止水とは若干意味が違っている。周知のように、実際の地下水工の設計・施工においては地下水の流れを完全に止めてしまうより、いくつか浸透させつつ、流れを適する形で地下水流を制御・処理する方が合理的なものが多い。特に、都市土木における地下掘削・開削に際しウェル揚水を大量に行うと、局所的な地盤沈下・変状や地下水枯渇に結びつきやすく、問題を起こすことがある。

もともと、地下水流を遮水することは物理的にみれば、遮水工によって、浸透流の変化と浸透流路の変化を与え、その間に流水損失を作る作用が基本となるが、結果的に水位・水頭の局所の変化と流量の減少を導くこととなる。したがって、遮水の水理効果や関係水理量はおのずから限定されるわけであるが、ある程度の広がりをもって地下水流の物理的影響を及ぼす。

本論はこの点に注目して、地下水水流中に透水係数の小さい鉛直遮水工を設けた場合、その水理効果、つまり、上流側遮水層の水位・水頭変化、流れ量変化、貯留量が非定常流としてどのように現われるかについて、水理厳密解を導き、流れの性質を明らかにしようとした。従来、非定常流による遮水水理厳密解は見当たらず、流れの基本的な性質が正確にわかり、地下水工学の基礎をなすものの一つと考えられる。

2. 流れの基本モデルとその理解

本論の目的は 図-2（後述）のような水平不透水基盤上の帯水層中に透水係数の小さい遮水壁を全面面で設けた場合の非定常流を解析することであるが、その解析には以下に述べる流れの基本モデルとその水理解が基礎となるので、ここではそれを便宜上先に述べておくこととする。

いま、図-1に示すように、水平不透水基盤上に不透水側で初期に一定の水位をもつ帯水層（後述するように必ずしも基準に限定しない）のモデルを考える。もともと、この帯水層モデルでは初期の上流境界水位 は下流水位 により大きいから流れが起こっている。もし、この境界水位が即時に上下流で となったとすれば、帯水層中の水頭や流量はどうなるであろうか。このような流れの問題は Boussinesq の問題とよばれており5, 流れの基礎式は,

\[
\frac{\partial h}{\partial t} = k^2 \frac{\partial^2 h}{\partial x^2} \tag{1}
\]

となり、水頭拡散型の式である。ここで、 \(h \): 水位・水頭, \(x \): 不透水基盤に沿って下流側にとった座標, \(t \): 時間, \(k^2 \): 水位・水頭拡散率とよばれる。

この水位・水頭拡散率はこのような流れでは,

\[
\kappa^2 = \frac{km}{S} \approx \frac{k_h}{h_e} \tag{2}
\]

\[
\frac{\partial h}{\partial t} = \kappa^2 \frac{\partial^2 h}{\partial x^2}
\]

図-1 流れの基本モデル

*正会員 工博 埼玉大学助教授 工学部
で定義される。ここで，S：貯留係数，k：透水係数，m：被圧帯水層の厚さ，λ：有効空隙率，h：平均水位である。

いま，上記したように，初期に帯水層内水頭分布が$f(x)$であり，かつ境界水位 h_a，h_b であったものが瞬時に h_a，h_b となった場合，非定常水頭は式 (1) を次の条件で解けばわかる。

つまり，境界条件は,

\[x=0, \ h=h_a \]
\[x=l, \ h=h_b \]
\[t=0, \ h=f(x) \]

である。ここで，$f(x)$：初期帯水層内水頭分布，h_a，h_b：おのおの 上下流境界水位，l：帯水層の水平長さである。

解は,

\[h = h_a - \frac{(h_a - h_b)}{l} x \]
\[-\frac{4}{\pi} h_a \sum_{n=1}^{\infty} \frac{1}{s} e^{-\frac{(2n+1)^2\pi^2}{l^2}} \sin\left(\frac{2n+1}{l} x\right) \]
\[+ \frac{2(h_a-h_b)}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^n}{s} e^{-\frac{n^2\pi^2}{l^2}} \sin\left(\frac{n\pi}{l} x\right) \]
\[+ \frac{2}{\pi} \sum_{n=1}^{\infty} e^{-\frac{n^2\pi^2}{l^2}} \sin\left(\frac{n\pi}{l} x\right) \int_0^l f(\lambda) \sin\left(\frac{n\pi}{l} \lambda d\lambda \right) \]

となる \(n\)。ここで，l：媒介変数である。

いま，式 (4) において,

\[I = \int_0^l f(\lambda) \sin\left(\frac{n\pi}{l} \lambda d\lambda \right) \]

とおいて，積分を遂行しなければならないが，初期水頭分布 $f(x)$ は 図-1 に示した圧力流れでは,

\[f(x) = h_a - \frac{x}{l} (h_a - h_b) \]

となる。一方，不圧力流れの場合は Dupuit の流れとするから,

\[f(x) = \sqrt{h_a^2 - \frac{x}{l} (h_a^2 - h_b^2)} \]

となる。

式 (7) は書き換え，$\frac{x}{l} \left[1 - \left(\frac{h_b}{h_a}\right)^2\right] < 1$ なら，2 項発展して,

\[f(x) = h_a \sqrt{1 - \frac{x}{l} \left[1 - \left(\frac{h_b}{h_a}\right)^2\right]} \]
\[= h_a \left[1 - \frac{x}{2l} \left(\frac{h_a}{h_a}\right)^2\right] \ldots \]
\[\equiv h_a - \frac{x}{2l} (h_a) (h_a - h_b) \]
\[\equiv h_a - \frac{x}{2l} (h_a - h_b) \]

となる。ここで，$(h_a + h_b) \neq 2 h_a$ である。

つまり，不圧力流れの場合でも上下流境界水位差が小さ}
3. 適水による非定常流れのモデルとその解

2. で述べた流れの基本モデルとその水理学を応用して、図-2のような水平非透水基盤上の帯水層中に透水係数の小さい遮水壁を垂直に設けた場合、非定常流を解析することとする。

初め、図-2に注目し、全長 L の帯水層はその上下流境界水位 h_u, h_d のため流れをもつが、その任意の位置、つまり上流側から距離 l に厚さ l_2 の遮水壁を設けると、遮水壁の上流側帯水層では水頭は徐々に上昇し、下流側で低下すると。もちろん、流下流量はおのおの帯水層の上流下で時間的に変化し、同時に帯水層中の貯留量も変化する。

（1） 連続の関係と基底流モデルの適用

図-2を参照して、遮水壁をもつ帯水層を含む連続の関係は、

\[
\frac{dV_u}{dt} = q_u - q_u' \tag{15}
\]

\[
\frac{dV_d}{dt} = q_d' - q_d \tag{15}
\]

とする。ここで、V_u, V_d: おのおの遮水壁の上流側帯水層の貯留量, q_u, q_d: おのおの上下流境界での流入・流出流量, q_u', q_d': おのおの遮水壁の直上下流での流入流量である。

さらに、遮水壁そのものの厚さは帯水層の長さに比べて十分小さい場合、そこで貯留量の変化は無視し、

\[
q_u' = q_d' = k' \frac{m}{l_2} (h_u' - h_d') \tag{16}
\]

とする。ここで、k'：遮水壁の透水係数, l_2: 遮水壁の厚さ, m: 帯水層厚さ, h_u', h_d': おのおの遮水壁直上下流端での水頭であり、時間とともに変わる。

そこで、2. で述べた結果式 (11), (12), (14) を遮水壁の上下流帯水層に記号を変えつつ応用すると、連続式 (15) 中の諸量、$dV_u/dt, dV_d/dt, q_u, q_d$ は、

\[
q_u = mk \left\{ \frac{(h_u - h_u')}{l_1} \right\} - \frac{2}{l_1} \left(h_u' - h_u \right) \sum_{i=0}^{\infty} e^{-it \frac{(2n+1)\pi}{l_1}} \tag{17} \]

\[
q_d = mk \left\{ \frac{h_d' - h_d}{l_2} - \frac{4}{l_2} \sum_{i=0}^{\infty} e^{-it \frac{(2n+1)\pi}{l_1}} \right\} + \frac{2}{l_2} \frac{h_d' - h_d}{l_2} \sum_{i=0}^{\infty} e^{-it \frac{(2n+1)\pi}{l_1}} \tag{18} \]

\[
\frac{dV_u}{dt} = km \left\{ \frac{4}{l_1} \left(h_u' - h_u \right) \sum_{i=0}^{\infty} e^{-it \frac{(2n+1)\pi}{l_1}} \right\} \tag{19} \]

\[
\frac{dV_d}{dt} = km \left\{ \frac{4}{l_2} \left(h_d' - h_d \right) \sum_{i=0}^{\infty} e^{-it \frac{(2n+1)\pi}{l_1}} \right\} - \frac{4}{l_2} \frac{h_d' - h_d}{l_2} \sum_{i=0}^{\infty} e^{-it \frac{(2n+1)\pi}{l_1}} \right\} \tag{20} \]

と書ける。ここで、h_u, h_d: 帯水層の上下流境界水位, l_1, l_2: おのおの遮水壁の上下流帯水層長さ, k: 帯水層の透水係数, h_u, h_d: おのおの初期における遮水壁直上下流端水頭である。

（2） 解

図-2に示した流れのモデルではすでに述べたように、遮水と同時に、上下流帯水層中の水頭、流量および貯留水量は直ちに変化するが、問題は遮水壁直上下流端水頭が不明である点にある。そこで、連続式 (15) へ式 (16) ～ (20) を代入し、連続式を満足するように h_u', h_d' を求めれば、問題は解決する。

式 (15) へ式 (16) ～ (20) を代入して、整理すると、

\[
a_1 h_u' + b_1 h_d' = c_1 \tag{21}
\]

\[
a_2 h_u' + b_2 h_d' = c_2 \tag{21}
\]

となる。ここに、

\[
a_1 = \left(1 + \frac{k'}{k} \frac{l_1}{l_2} + 2 a_1\right) \tag{21}
\]

\[
b_1 = - \frac{k'}{k} \frac{l_1}{l_2} \tag{21}
\]

\[
c_1 = (h_u + 2 h_u a_1) \tag{21}
\]

\[
a_2 = - \frac{k'}{k} \frac{l_1}{l_2} \tag{21}
\]

\[
b_2 = \left(1 + \frac{k'}{k} \frac{l_1}{l_2} + 2 a_2\right) \tag{21}
\]

\[
c_2 = (h_d + 2 h_d a_2) \tag{21}
\]

\[
a_1 = \sum e^{-it \frac{(2n+1)\pi}{l_1}} \tag{21}
\]

\[
a_2 = \sum e^{-it \frac{(2n+1)\pi}{l_1}} \tag{21}
\]

である。
したがって、式 (2) の解は,
\[
h_d' = \frac{c_0 b_0 - c_1 b_1}{a_1 b_1 - a_0 b_0}
\]
\[
h_d' = \frac{c_0 d_0 - c_1 d_1}{b_1 d_1 - b_0 d_0}
\]
となる。

もし、式 (22) において、時間 \(t \to \infty \) つまり定常状態では,
\[
h_u' = \left(\frac{k(l_1 + l_2)}{k(l_1 + l_2) + k_1 l_2} \right) h_d
\]
\[
h_d' = \frac{k_1 l_2 h_u + (k(l_1 + l_2) + k_1) l_2}{k(l_1 + l_2) + k_1 + k_2} \]
となる。

また、定常状態での流量 \(q = q_u = q_d' = q_d \) となり,
\[
q = \frac{k(h_u - h_d)}{(l_1 + l_2) + \left(\frac{k}{k} \right) l_2} = \frac{k(h_u - h_d)}{L + \left(\frac{k}{k} \right) l_2}
\]
である。ここで、\(L = l_1 + l_2 \) であり、\(L \gg l_2 \) である。

つまり、式 (24) からわかるように定常状態では遮水効果は遮水層の透水係数 \(k \) と遮水壁のそれ \(k' \) の比 \(k/k' \) と遮水壁の厚さ \(l_1 \) の積に関係するわけである。言い換えると、遮水効果を得ようとするとき、透水係数比 \(k/k' \) を十分大きくするか、遮水壁の厚さを大きくすることのいずれかである。

さらに、式 (22) 中の遮水壁上下流端初期水頭 \(h_{u0} \), \(h_{d0} \) は式 (6) に \(x = l_1, x = l_1 + l_2 \) を代入すると求まる。

次に、式 (22) によって \(h_u', h_d' \) がある時刻 \(t \) に対して決まれば、その時点での上下流枚水層中の水頭分布は式 (4), (9) を適用して、

上流層水層に対し、
\[
h_u = h_u' - \left(h_u - h_u' \right) \frac{x}{l_1}
\]
\[
\frac{4 \pi}{x} h_u' \sum_{s=0}^{\infty} \frac{1}{(2s+1)\pi} e^{-\frac{(2s+1)\pi x}{l_1}} \sin \left(\frac{(2s+1)\pi x}{l_1} \right)
\]
\[
+ \frac{2 \pi}{x} h_d' \sum_{s=0}^{\infty} \frac{(-1)^s}{s} e^{-\frac{s\pi x}{l_1}} \sin \frac{s\pi x}{l_1}
\]
\[
= \frac{2 \pi}{x} h_u' \sum_{s=0}^{\infty} \frac{(-1)^s}{s} e^{-\frac{s\pi x}{l_1}} \sin \frac{s\pi x}{l_1}
\]
\[
+ \frac{2 \pi}{x} h_d' \sum_{s=0}^{\infty} \frac{1}{s} e^{-\frac{s\pi x}{l_1}} \sin \frac{s\pi x}{l_1} \]...

下流層水層に対し、
\[
h_u = h_u' - \left(h_u - h_u' \right) \frac{x}{l_1}
\]
\[
\frac{4 \pi}{x} h_u' \sum_{s=0}^{\infty} \frac{1}{(2s+1)\pi} e^{-\frac{(2s+1)\pi x}{l_1}} \sin \left(\frac{(2s+1)\pi x}{l_1} \right)
\]
\[
- \frac{2 \pi}{x} h_d' \sum_{s=0}^{\infty} \frac{(-1)^s}{s} e^{-\frac{s\pi x}{l_1}} \sin \frac{s\pi x}{l_1}
\]
\[
+ \frac{2 \pi}{x} h_u' \sum_{s=0}^{\infty} \frac{1}{s} e^{-\frac{s\pi x}{l_1}} \sin \frac{s\pi x}{l_1} \]...

とする。

上下流帯層の貯留量 \(V_u, V_d \) も式 (13) から同様に、

上流帯層に対し、
\[
V_u = \frac{h_u + h_u'}{2} l_1
\]
\[
- \frac{8 \pi}{x} l_1 h_u' \sum_{s=0}^{\infty} \frac{1}{(2s+1)\pi} e^{-\frac{(2s+1)\pi x}{l_1}}
\]
\[
+ \frac{2 \pi}{x} l_1 (h_u' - h_u) \sum_{s=0}^{\infty} \frac{(-1)^s}{s} e^{-\frac{s\pi x}{l_1}}
\]
\[
- \frac{4 \pi}{x} l_1 h_u' \sum_{s=0}^{\infty} \frac{(-1)^s}{s} e^{-\frac{s\pi x}{l_1}}
\]
\[
\text{下流帯層に対し、}
V_d = \frac{h_d + h_d'}{2} l_1
\]
\[
- \frac{8 \pi}{x} l_1 h_d' \sum_{s=0}^{\infty} \frac{1}{(2s+1)\pi} e^{-\frac{(2s+1)\pi x}{l_1}}
\]
\[
+ \frac{2 \pi}{x} l_1 (h_d' - h_d) \sum_{s=0}^{\infty} \frac{(-1)^s}{s} e^{-\frac{s\pi x}{l_1}}
\]
\[
\text{である。}

結局、遮水壁の上下流端での水頭 \(h_u', h_d' \) が式 (21) の解として求まれば、ある時点の帯層層の流量、水頭分布形、および貯留量が決まることになる。

4. 流れの性質

3. で展開した理論結果を用いて、遮水による流れの基礎的な性質を吟味することとしよう。

いま、図 - 2 に示したような被圧流れにおいて、貯留係数 \(S = 1.8 \times 10^{-8} \)（比較的マトリックスのしっかりした砂礫層）、帯層壁厚さ \(m = 5 \) m、透水係数 \(k = 8.640 \) m/day（= \(10^{-4} \) cm/s）、遮水壁厚さ \(l_1 = 10 \) m とした場合、下流境界水位 \(h_u, h_d \) および帯層壁長さ \(l_1, l_1 \) を変化させて、流れの性質を明らかにすること。

まず、初期状態で遮水壁が設定される位置の水頭 \(h_{u0}, h_{d0} \) は式 (6) から決め、式 (22) から任意の時点 \(t \) での遮水壁直上下流端の水頭 \(h_u', h_d' \) を算定する。その場合、\(t \to \infty \) のときは \(h_u', h_d' \) の値は式 (23) から求めることができる（式 (22) から \(t \to \infty \) として得たものと同じ）。いうまでもなく、\(h_u', h_d' \) に関する両者の比 \(h_u'/h_d', h_u'/h_d' \) の値は \(t \) が増すにつれて 1 に近づく。たとえば、上述の条件で \(h_d = 24 \) m, \(l_1 = 500 \) m, \(l_1 = 490 \) m の場合は、\(h_{u0} = 27.0 \) m, \(h_{d0} = 26.94 \) m, \(h_u'/h_d'' = 28.61 \) m, \(h_u'/h_d'' = 25.61 \) m というように、おのおのの式 (6), (23) から求まる。

次に、任意時点での \(h_u', h_d' \) が得られれば、式 (16), (17), (18) を用いて、遮水壁を通過する流量、\(q_u' (= \)
q_d'、上下流帯水層の流量 q_u, q_d が決まる。$t \to \infty$ での最終流量 $q_{u \to}, q_{d \to}, q_{d' \to}$ は等しい。たとえば、上述条件の場合（つまり、$h_d=24 \text{m}$、$l_1=500 \text{m}$、$l_2=490 \text{m}$ の場合）には $q_{d' \to}=q_{u \to}=0.130 \text{m}^3/\text{day}$ 一定である。

さらに、h_u', h_d' を式 (25)、(26) に代入して、任意時刻 t での h_u', h_d' に対応して、上下流帯水層における水頭分布 $h \sim x$ の形状が得られる。

このような計算手順に沿って、上述の条件において、$l_1=500 \text{m}$、$l_2=490 \text{m}$ の場合に $h_d=24 \text{m}$、21m、18m としたとき、水頭分布の経時変化 ($h \sim t$ 関係)、遮水壁直上下流水頭の経時変化 ($h_u'/h_u \sim t, h_d'/h_d \sim t$ 関係)、および上下流帯水層と遮水壁の流量経時変化 ($q_u/q_{u \to}, q_d/q_{d \to}, q_d'/q_{d' \to} \sim t$ 比較) が図 3、4、5 で示されている。これらの計算結果に注目すると、被圧帯水層を遮水壁した際の流れが次第に理解できる。図 3 からわかるように、水頭分布は被圧であるため（式 (2) の水頭拡散率 e が大きいことに依存するため）、遮水壁によりすみやかに水頭が応答し、定常状態に至り、遮水壁上下流に水頭差が形成されている。この遮水壁直上下流の水頭 h_u, h_d' は時間とともに急激に定常化していくことが図 4 より把握できる。いまの場合、遮水壁を帯水層のほぼ中央にあたるため、初期水頭分布から容易に上げられ、低下層がほぼ等しく、時間軸上に上下対称に変化して最終値 1 に漸近する。当然ながら、境界水位差 h_u-h_d が増すにつれて、遮水壁上下流の水頭差は増大する。一方、上下流帯水層、および遮水壁を通過する流量は経時的に図 5 のように変化している。$q_u/q_{u \to}, q_d/q_{d \to}$ は時間とともに減少し 1 に漸近するが、$q_d'/q_{d' \to}$ は遮水壁上下流の水頭差が時間とともに増すため、経時的に増大して 1 に近づく。

次に、これらの遮水効果が帯水層の長さによってどう変化するかを知るために、同じ条件で $l_1=800 \text{m}$、$l_2=190 \text{m}$
としたとき，$h_u'/h_{dt}=h_d'/h_{d't}=\sim t$ 関係と $q_u/q_{dt}=q_d/q_{d't}=\sim t$ 関係がそれぞれ 図-6, 7 である．
上述した $l_1=500 \text{ m}$，$l_3=490 \text{ m}$ の場合を比べて，
2 つほど違った点が興味深い．一つは，遮水壁に下って壁
下流側の水頭 h_u'/h_{dt} が時間の経過によって $h_u'/h_{dt} > 1$ から $h_u'/h_{dt} < 1$ を経て 1 に近づく点
である．現象的にみると上流帯水層の長さが大きいた
め，貯留速度が小さくなる一方，下側帯水層は長さが
小さいために水頭低下速度が大きく，一度 h_u'/h_{dt} が
負になって，徐々に正に転じる．このことは図-7 の
$q_u/q_{dt}=\sim t$ 関係に特徴的に現れている．

ちょっと $t = 10^{-3}$ 程度で q_u/q_{dt} は最小値をとり，h_u'/h_{dt} も
最小となり，両者ともに最小値をとる時刻は 10^{-3} と
一致している．
なお，すでに述べたように，本論は境界水位差 h_u-h_d
が小さいと，不被圧流にも適用されるので，上述した水
理量の経時変化速度は不被圧流の場合は，有効空隙率 k_e
が貯留係数 S に比べ十分大きいかから，k_s が小さくなり
ゆっくりと伝播することになる．

5. むすび
地下水流を遮水することは地下水工学上広く応用され
ているにもかかわらず，その水理学的な意味や性質があ
まり深く研究されていないように思われる．本論文では
このような観点から，上流帯水層中の中断面鉛直遮水壁
によって遮水効果や地下水流の挙動がどうなるかについ
て，非定常流の厳密解によって検討した．その結果をま
とめるために次のようにする．
まず，遮水壁を設けるとその上下流帯水層で遮水壁
を中心に上の上昇，低下が波及しつつ，水位・水頭
分布が変化する．その変化の伝達速度は水頭拡散率 a^l
に依存し，被圧帯水層で速く，不被圧帯水層では非常
に遅い．それに伴って上下流帯水層の貯留量が変化する
が，流量も時間とともに変わる．流量の経時変化は上流
帯水層におけるそれが初期に大きく，遮水壁の上下流端
で水位・水頭がつくにつれて，遮水壁を通過する流量が徐
々に大きくなる．さらに，遮水効果は透水係数比，およ
び遮水壁の厚さに逆比例して現われる．

参考文献
1) 植田達武：世界における遮水壁の動向と最近の技術，基
礎工，Vol. 9, No. 4, 1981．
2) 松本英義・島崎正弘・田野健男：東京都水道局三郷市水
場における泥水固化地中壁および鉄筋コンクリート連続
地中壁の施工，基礎工，Vol. 8, No. 11, 1980．
3) 松尾新一郎・河野伊一郎：地下工水壁による地下水制
制の実験的研究，土木学会論文集，No. 178, 1970．
4) 佐藤邦明：地下貯留による水資源開発の水理的研究，土
と基礎，Vol. 28, No. 12, Ser. 275, 1980．
5) Aravin, V.I. and S.N. Numerov; Theory of Fluid Flow
in Dendromorphous Porous Media, Translated
from Russian, Israel Program, for Scientific Transla-
tions, Jerusalem, p. 300, 1965．
6) 小平吉男：物理数学，第二巻，岩波書店，pp. 286〜289，
昭和 18 年．
（1981.11.24・受付）