歩行トリップ長の研究

A STUDY ON WALKING TRIP LENGTH

村田隆裕

By Takahiro MURATA

1. はじめに

この論文の目的は、都市の中心部における歩行者の歩行距離の統計的分析から、歩行距離の理論分布を導き、そのパラメーターについて比較検討を行って、トリップ長分布一般について理論的説明を試みるとともに、交通施設計画のための基礎資料を得ようとするものである。

2. 歩行距離に関する諸検

アメリカおよび西欧で得られている歩行距離の中央値（50パーセンタイル値）と95パーセンタイル値を、歩行を始めた施設別、およびトリップ目的別にみると、表1、表2のようになっている。

西ドイツ、オランダ、スイスの調査では、宅地街角から目的地まで200～300mになると利用頻度が急激に低下することが知られ、デンマークのアールボルグ、ランデルス、ホテルステンポにおけるバス停留所と歩行者区域内の最重要な地点との距離に関する調査では、平均200mという結果が得られている。

また、都心地区における歩行者の歩行トリップ長の平均値は、西ドイツのデュッセルドルフとエッセンにおける調査では、自家用車を用いた来客者はそれぞれ1,050m、725mであり、公共輸送機関を用いた来客者はそれぞれ1,725m、1,625mで、いずれの都市でも後者が長いという結果が報告されている。オランダ各都市の調査では、アントワーヘン市では自宅から徒歩で都市へ買い物に行く場合、平均歩行距離は約800m、ユトレヒト市では自宅から大デパートまでの平均歩行距離は、直線距離で約950m、ハーグ市では同じく800mである（1）。

これらの調査結果は、各都市の交通施設配置の基準となる数値を定めるために役立てるであろう。ヨーロッパ諸国で採用されている公共輸送機関の停留所からの歩行による到着距離として推奨されている値は250mから1,000mまでさまざまなあるが、文献9の著者は、3分圏、すなわち160mを推奨している。この3分圏は西ドイツ、デュッセルドルフの都心部歩行者区域における公共輸送機関の停留所配置計画にも採用されている。

フランスのルーザン中心街では、駐車場を中心とし半徑300mの円を描きと都心地区がほぼカバーされるよ
う、駐車場と公共輸送機関の停留所の配置計画を立てられている。

歩行距離に関する数値は以下に示すようにさまざまなであるが、この差異は、一つには歩行トリップの定義の違い、また、歩行距離分布から得られる一帯の統計量のうち、どれを選ぶかにより、そして都市の規模による違い、もとを反映したものである。歩行距離に関するこれらの違いを統一的に説明するための理論的方法を、都心部における歩行距離の実態を調査結果の解析を通じて考察する。

3. 歩行距離分布について

（1）歩行トリップとリンク

ここでは、歩行トリップを公共輸送機関や自家用車を降りた地点を起点とし、いくつかの地点に立寄って用具を済ませた後、交通機関に乗るまでの徒歩による道路上の移動を定義する。ただし、鉄道駅や駐車場ではその出入口（駅ならびに改札口）を起終点と考える。

また、起点から立寄地点まで、および隣り合う立寄地点間、さらに最後の立寄地点から終点までの徒歩による道路上の移動を定義する。歩行トリップを模式的に示すと図-1 のようになる。すなわち \(n \) か所の立寄地点のある歩行トリップは \((n+1) \) リンクからなる。

ただし、通勤（出勤）の場合は終点は勤務先の建物の入口とし、トリップは 1 リンクのみから成ると考える。

（2）リンク長分布

a）リンク長分布の仮定

このように定義した場合のリンクの長さの頻度分布がいかなるものかを考える。

歩行トリップの始点、または立寄地点からみて、次の立寄地点となり得る（潜在的な）地点は、大量の歩行者を誘導する施設のみであるような場合を除き周辺に面的に分布していることが一般的であろうから、潜在的リンクの頻度分布は、距離の増加に伴って増える形になるであろう（図-2 の \(f_1 \) の潜在的リンク総数を \(f \) とすると、

\[
f_1 = cl^* \quad \cdots \quad \text{(1)}
\]

ただし、 \(l \) はリンク長、 \(c \) と \(\alpha \) はパラメーターと合わせることとする。

一方、歩行者の歩行距離の選択の度合いを考えると、距離ほど好ましく、距離が長くなるほど選ばれる、という形を仮定することができる。これを負の指数関数で代表する（図-2 の \(f_2 \))。すなわち、

\[
f_2 = \lambda e^{-Hl} \quad \cdots \quad \text{(2)}
\]

\(\lambda \) はパラメーターと表わすこととする。このように仮定すると、現実に現われるリンク長の頻度分布は、式 (1), (2) を乗じた関数

\[
f(l) = c l^* \cdot \lambda e^{-Hl} \quad \cdots \quad \text{(3)}
\]

で表されるはずである。 \(l \) の確率密度関数は式 (3) において、

\[
\int_0^\infty f(l)dl = 1 \quad \cdots \quad \text{(4)}
\]

なるよう \(c \) の値を決めたものとなる。すなわち、

\[
c = \frac{\lambda^{k-1}}{\Gamma(k)} \quad \cdots \quad \text{(5)}
\]

ただし、 \(k = \alpha + 1 \), \(\Gamma(k) \) はガンマ関数となる。したがって、

\[
f(l) = \frac{\lambda^{k-1}}{\Gamma(k)} \cdot e^{-Hl} \quad \cdots \quad \text{(6)}
\]

これがガンマ分布であり、これをリンク長の理論分布と仮定する。この関数は 2 つのパラメーター \(\lambda, k \) をもち、 \(l \) の平均値は \(m = k/\lambda \) となる。

b）リンク長分布の検証

（1）リンク長の調査

以上に述べたリンク長分布に関する仮定の検証のために、西ドイツにおいて実施された調査の結果を用いる。この調査は 1972 年 10 月に西ドイツ、ガルムシュタット工科大学の交通計画・交通工学研究室で、都市中心部の買物交通の特性を調べるために実施されたものである。ガルムシュタット市（人口 14 万人）中心部の面的な歩行者地区における主婦に対するアンケート調査の結果、245 名、1494 購物トリップ、8955 リンクについての距離データが得られた。この地区はデパートが一軒あるほかは、小売店、飲食店、事務所などが集中する都心商店街である。リンク長がガンマ分布に適合することを検証するために目的地点が \(f \) 点（\(j = 1, 2, \ldots, 12 \)）あるトリップごとの第 \(k \) リンク（\(k=1, 2, \ldots, j+1 \)）のリンク長分布についてカイ二乗検定を行う。このようにデータを分割する理由は、特性の類似したデータをまとめ、カイ二乗検定に適したサンプル数にデータ数を減らすためである。

③ 最小二乗法によるガンマ分布のあてはめ

\[
f(l) = \frac{\lambda^{k-1}}{\Gamma(k)} \cdot e^{-Hl} \quad \cdots \quad \text{(6)}
\]
ここで、観測結果がヒストグラムとして与えられている確率変数の理論分布としてガンマ分布をあてはめるとき、そのパラメータを最小二乗法に基づいて推定する方法を開発したのでそれについて述べる。

ガンマ分布の確率密度関数を、式 (6) のように表わし、また、階級の幅を \(w \) とするとき、第 \(i \) 階級の順位密度を \(Y_i (i = 1, \ldots, n) \) とするとき、

\[
y_i = \frac{Y_i}{w}
\]

とおく、\(y_i \) は確率密度である。第 \(i \) 階級の確率変数 \(x_i \) に対する理論確率密度を \(f_i (x) = f (x_i) \) とし、

\[
G = \sum_{i=1}^{n} (f_i - y_i)^2
\]

を目的関数としてこれを最小とするようなパラメーター \(\lambda \) および \(k \) を求める。そのためには、式 (9) を \(\lambda, k \) でそれぞれ偏微分したものを 0 とした 2 つの式

\[
F_i = \sum_{i=1}^{n} (f_i - y_i) \frac{\partial f_i}{\partial \lambda} = 0 \quad (9)
\]

\[
F_k = \sum_{i=1}^{n} (f_i - y_i) \frac{\partial f_i}{\partial k} = 0 \quad (10)
\]

を連立方程式として解けばよい。

ここで、\(f_i \) の \(k \) による偏微分においてイタリック

\[
\hat{\gamma} (k) = \frac{d}{dk} \ln \Gamma (k) = \frac{\Gamma' (k)}{\Gamma (k)} \quad (11)
\]

を導入すると、級数展開による数値計算が可能になる。この連立方程式の解法にニュートン法を適用すると、\(\hat{\gamma} (k) \) の \(k \) による微分の項が現われると、これはトラインガウ正規分布として級数展開ができる、計算プログラムの作成が容易になる。これらのことは逆に実用上に補足することがある。

計算はダムシュタット工科大学の IBM/370-168、および科学情報研究所のパーソナルコンピュータ HP-85により行った。大型計算機では演算時間は \(n \) が 20 程度で約 2 秒、パーソナルコンピュータで約 10 分を要した。

b) パラメーターの値についての考察

この結果求められた \(k \) 値と \(m \) 値をもつガンマ分布の適合性は、カイニ乗偏相数を計算して比較することができる。5 パーセントの有意水準を定めて、適合性の検定を行うと、棄却されるものは目的地点数が 2 以上 10 以下のトピックにおけ る、リングのごとのデータ 63 のうち 12 である。残りの有意なデータ 51 について、\(k \) 値と \(m \) 値に各データのサンプル数で重みをつけ、頻度分布を求めると図-3, 4 のようになる。これらの分布の平均と標準偏差は

\[
\hat{k} = 2.00, \quad \sigma_k = 0.22, \quad \bar{m} = 190.0, \quad \sigma_m = 24.3
\]

となる。すなわち、

\[k = 2, \quad m = 190 \] という値のパラメーターをもつガンマ分布がリング長分布の典型的なものであることが知られる。図-5 はパラメーターがこれらの値に近く、カイニ乗偏相数による適合度も高いデータである。

\(k \) が 2 に等しいことは、式 (5) のただしこ書きより、\(\alpha \) が 1、すなわち、図-2 の \(f_i \) が直線となっていることを示している。すなわち拵的な次の立寄地点が、リング壁面からの距離に比例して分布していることを示すと考えられる。このことはリングの終点、すなわち次の立寄地点（またはトピック終点）となり得る商店や事務所が、当該地域内ではほぼ均等に分布していることを示すのである。

\(m \) 値は、平均値の推定値である。リング長の平均値は目的地点分布からも決まる値であることは、\(m = k/\lambda \) の式にも示されている。この式の \(\lambda \) の値は、歩行における距離選好傾向を表わす式 (2) のパラメーターで、式 (2) の平均値が 1/\lambda とされる。1/\lambda の値は、調査対象地域の歩行者が自由な距離選好のもとで歩行をしたとするならば、平均的にどの程度まで歩くであろうかを示す値と考えられる。この調査の場合 1/\lambda = 190.0/2.00 = 95.0 (m) である。

\(\lambda \) の値は歩行者の距離選好を示すパラメーターであるが、個人に属するパラメーターというよりは、むしろこの歩行者が歩く都市の特性から決まるものと考えられる。すなわち \(\lambda \) 値は式 (5) により目的地点数の分布と仮定する式のパラメーター \(\alpha \) に \(\alpha \) すなわち \(k \) の関数で、\(k = 2 \) のとき、\(\lambda = \alpha \) である。

（3）歩行トピック長の分布

a) 立寄地点

図-1 に示したように、1 歩行トピックの中には、1 か所以上の立寄地点を含む。この立寄地点の数の分布はポ
アソン分布に従うことが次のように導かれる。すなわち、一人の買物客が店舗を訪れる事象を s とすると、1店で j 店を訪れる確率は s の生起確率 p をパラメータとする二項分布に従うが、p はきわめて小さい。また、$Np = \mu$（N は店舗の全店舗数、μ は平均立客数）であるから、その分布形は

$$P(j/\mu) = \frac{\mu^j}{j!} e^{-\mu}$$

（ポアソン分布） …（12）

となる。 図-6 は立客数の分布で、ポアソン分布にきわめてよく適合していることが示されている。

b）歩行トリップ長分布

トリップ内の立寄地点が i か所ある歩行トリップのリンク数は $(i+1)$ である。各リンク長は、式 (6) で示される確率密度関数をもつと仮定できるが、ガンマ分布のモーメント母関数は

$$\varphi_x(t) = \frac{1}{(1-\frac{t}{2})^k}$$

であり、したがって同じ確率密度関数をもつ 2 つの確率変数 X, Y の和の確率密度関数のモーメント母関数は

$$\varphi_{x+y} = \varphi_x \varphi_y = \frac{1}{(1-\frac{t}{2})^{2k}}$$

となり、再帰性を有することが示される（13）。したがって、i リンクをもつ歩行トリップ長 $x = \sum_{j=1}^{i} x_j$ (x_j は第 j リンクの長さ）の確率密度関数は再び次のようなガンマ分布となる。

$$f(x) = \frac{x^{k-1}}{\Gamma(k)} e^{-\frac{x}{\lambda}}$$

ただし、i: リンク数、x: 歩行トリップ長、λ: リンク間の平均長$

（6）のパラメーター

結局、歩行トリップ長の分布 $g(x)$ は、式 (15) を、リンク数の分布（式 (12) の確率変数を $j=i-1$ と変換した分布）で加重平均したもの、すなわち

$$g(x) = \sum_{i=1}^{\infty} \frac{\mu^i}{(i-1)!} e^{-\mu} \frac{x^{k-1}}{\Gamma(k)} e^{-\frac{x}{\lambda}}$$

となることが導かれる。

各パラメーターの値を $k=2$, $\lambda=k/m=0.01053$, $\mu = 4.95$ として式（16）のグラフを描き、それを調査結果から得られた歩行トリップにおける事例から最後の目的地点までの歩行距離分布に重ねると図-7 が得られる。この図にはトリップ長が 700m から 1000m のときに仮定した頻度よりも観測された頻度が特に多いことが見出されているが、これはリンク長分布における 100m から 150m の間における頻度の突出傾向とも関連すると考えられる。このことは、このデータに固有の特性か、あるいは歩行距離の選好傾向として仮定する式 (2) のように、さらにパラメーターを加えた他の表現によるべきであることを示すものであるかについては、今後の検討にゆだねたい。

なお、トリップ長全体を起点から終点までとせず、起点から最後の立寄地点まもとし示したことは、次の理由による。すなわち、最後の立寄地点から終点までの終端リンク長分布には終点が起点と同位置でない場合と異なる場合と、パラメーターに大きな差がみられる。後者は $k=2.3$, $m=k/2=184m$ でリンク長分布として通常の値とみなすが得るもので、前者は $k=2.0$, $m=k/2=237m$ であり、通常のリンク長分布とは考えられない。これは、起点→終点の場合に拘束的な動きであるために生じたことであると思われる。

4. 横浜市中心部における歩行距離

(1) 概 要

歩行距離に関する統計的考察は、西ドイツで得られたデータに基づいて行ったが、平均歩行距離や立寄地点数は、その国の習慣、都市の規模などに影響されると考えられ、わが国における実態についても、調査。この章では横浜市の中心部で実施した歩行距離調査の結果を示し、3. で展開した理論を適用するとともに、わが国におけるパラメーターの値について考察を行う。

調査は昭和 52 年 5 月に横浜市中区の桜木町駅と関内
駅周辺、および関内と伊勢佐木町の街頭の歩行者に対して実施された。この地区は横浜市内商業地区、および旧来からの商業地区である。調査の対象者の歩行者は成人男女約3000名で、地域内の鉄道駅、バス停留所、駐車場（バーキングメーターを含む）の周辺で歩行トロッパを終え、これらの施設から交通機関を利用しようとする歩行者（たとえばバスに乗るためにバスを待つ人）に、年齢、歩行の目的、歩行トリップ内容を質問した。調査対象者除いた者は、通行目的の学生と生徒、対象地域内に目的地のない者、交通機関の乗換えのみを目的とする者、調査対象地域内の交通施設を利用しない歩行者、高齢と認められる者である。

歩行目的読者は、通勤、業務、家事・買物、レジャー・レクリエーション、その他とする。トリップ目的が複数ある場合には、主たる目的を記入した。

歩行トリップの内容は、起点となる駅などの交通の結節点から、終点となる交通の結節点までの歩行径路と、立地地点を地図上に記入する方法で調査した。結果、結節点が大規模な施設（駅やデパートなど）である場合が多いので、それらを、各施設の、公道に接する出入口とした。

交通の結節点とは、鉄道駅（国鉄、地下鉄），バス停留所、駐車場、バーキングメーター、タクシーの乗降地点、送迎または自転車の乗降地点である。

調査日は9日1日、20日（金）、22日（土）の正午から18時30分までであり、天候は晴れ、および壊れであった。調査員は街頭で行う目的について質問し、調査票に記入した。得られた有効サンプル数は3351件で、うち平日分は1851件、休日分は1500件である。通勤トリップと業務トリップをそれぞれ784件、および579件のデータが得られたが、うち平日分は765件（95%）、および552件（95%）であった。家事・買物目的と、レジャー・レクリエーション目的のトリップについて得られた1505件、483件のうち、休日分は1053件（70%）、396件（82%）であった。

(2) 調査結果とその考察

a) 立地地点数

トリップ目的ごとの平均立地地点数は業務1.19、家事・買物1.54、レジャー・レクリエーション1.37であり、いずれも小さい値である。家事・買物トリップについて、立地地点数の分布をみると図-8のようになっている。このような、1トリップにおける立地地点数の少ない者は、わが国の生活慣習に起因する歩行トリップの特徴ということができるだろう。立地地点が1か所のみの買物トリップが圧倒的に多いことは、買物客が1回のトリップで訪れる店の数を確率変数とすることはできないことでもあり、したがってポアソン分布に近づけることができない。

b) リンク長の一般的傾向

リンク長のデータは7029リンクについて得られ、これを歩行目的別に、始端リンク（歩行トリップ開始地点から最初の目的地まで）と、終端リンク以外のものについてみると、それぞれの平均値は表-3のようになっている。この表から始・終端リンク以外のものは、kが1に近く、したがって歩行距離の選好傾向と仮定した分布形に近いことが知られる（図-9）。このことは、第二弐の目的地は、強い目的意識があって訪れるというよりも、「ついでに」訪れる傾向のほうが強いことを示すと考えられる。これは、西ドイツ・ダルムシュタットの主婦の都心商業地区での買物トリップ

\[
N = 2567 \quad n = 1.43
\]

\[
N = 824 \quad \text{MEAN} = 210.3 \quad M
\]

\[
K = 73 \quad L = 0.0491 \quad M<K/L=149.6
\]

\[
N = 3351 \quad \text{MEAN} = 480.5 \quad M
\]

\[
K = 1.90 \quad L = 0.0362 \quad M<K/L=497.7
\]

図-8 家事・買物トリップの立寄地点数（横浜）

図-9 家事・買物トリップの中途リンク長分布（横浜）

図-10 始端リンク長分布（横浜）
の傾向と大きく異なる点である。

c) 始端リンク

表1に記載のように，始端リンクのk値は1.7～2.2であり，すでに述べたリンク長についての理論によると説明できる。始端リンク長分布は 図11のとおりであり，k値は1.9，m=k/λ=498mである。

賃物トリップについての始端リンクを，西ドイツの同様のデータと比較すると 図12のようであり，平均步行距離の違いが明らかである。式（5）のc値は日本で1.20×10^3，西ドイツで23.7×10^3であり，目的地点の分布の差が読み取れる。また，λの逆数，すなわち自由な距離選好のもとでの歩行における平均もc値の差から，日本では200m，西ドイツでは111mとなっている。

5．おわりに

この小論は都市内の歩行トリップ長に関する理論的考察に主眼をおいた。そのため，調査データの分析結果はそのごく一部を示したこととされているが，本研究における結果をまとめるに至るようになる。

（1）歩行トリップ長の頻度分布は自由な距離選好を行うときに平均的に歩くであろう距離の逆数λ，潜在的目標地点の地域的な分布の仕方を示すパラメーターk，トリップにおける平均立地地点数ρをパラメーターとする式（16）で表すことができる。

（2）歩行トリップは，リンクに分割したうえで，扱うべきである。特に交通結節点を始点とする始端リンク長の分布が，各交通施設の影響を説明する手がかりとなる。

（3）賃物トリップの始端リンク長分布はk=2のガノマ分布とすることは，西ドイツ，日本のいずれの調査結果からも導き出されたが，中途のリンク長分布のk値は西ドイツの場合は，約2であるが，日本のデータからは約1であることが算出された。これはそれぞれの国の生活慣習による違いであり，日本の場合，二番目以降の立寄地点は，むしろついてい立寄の傾向が強いことを示している。

（4）歩行における距離の選好を表わす関数，式（2）のパラメーターλは，目的地の地域的広がりを示す関数，式（1）の2つのパラメーターによって表わされる。したがって，交通結節点の影響範囲を想定する場合，都市規模により，その基準値が異なることとなる。

（5）ガンマ分布のパラメーターの最小二乗法による推定をパーソナルコンピューターで行う方法を開発したので紹介する。今後はこの理論を交通施設の配置計画の基礎として，あるいは人の歩行行動の分析の基礎として適用してゆくように発展させたいと考えている。

なお，この論文は参考文献（13），（14）をもとに，新しい展開を行ったものである。

西ドイツにおける研究のご指導をいただいたダルムシュタット工科大学のレリコ教授ならびに同大学のフライ研究員には末尾ながらも心より謝意を表する次第である。

付録1

ここでは非線形立直立成長式（9）,（10）の解について述べる。これらの式はそれぞれ次のようにする。

\[F_i = \sum (f_i - y_i) \frac{(\lambda x_i)(k-x_i)^{k-1}}{\Gamma(k)} e^{-\lambda x_i} \]

\[F_k = \sum (f_i - y_i) \frac{x_i^{k-1} \ln(\lambda x_i) - \psi(k)}{\Gamma(k)} e^{-\lambda x_i} \]

ただし，\[\Gamma(k), \psi(k) \]は，それぞれガンマ関数，およびダイガンマ関数

これをニュートン法によって解く。このときに用いる係数行列は次のとおりである。

\[A_i = \begin{pmatrix} g_{ki} & g_{kk} \\ g_{ki} & g_{kk} \end{pmatrix} \]

ただし，

\[g_{ki} = \frac{\partial F_i}{\partial k} = \sum \left(\frac{\partial f_i}{\partial k} \right)^2 + (f_i - y_i) \frac{\partial^2 f_i}{\partial k^2} \]

\[g_{kk} = \frac{\partial^2 F_i}{\partial k^2} = \sum \left(\frac{\partial f_i}{\partial k} \right)^2 + (f_i - y_i) \frac{\partial f_i}{\partial k} \]

ここで，

\[\frac{\partial f_i}{\partial x_i} = \frac{\partial x_i^{k-1} \ln(\lambda x_i) - \psi(k)}{\Gamma(k)} e^{-\lambda x_i} \]

\[\frac{\partial f_i}{\partial \lambda} = \frac{\partial x_i^{k-1} \ln(\lambda x_i) - \psi(k)}{\Gamma(k)} e^{-\lambda x_i} \]

\[\frac{\partial^2 f_i}{\partial k^2} = \frac{\partial x_i^{k-1} \ln(\lambda x_i) - \psi(k)}{\Gamma(k)} e^{-\lambda x_i} \]

ただし，\[\psi'(k) = \frac{d}{dk} \psi(k) \]（トライガンマ関数）
表-4 \(C_j \left(1/I(x) = \sum_{j=1}^{26} C_j x^j \right)^{1/2} \)

<table>
<thead>
<tr>
<th>(j)</th>
<th>(C_j)</th>
<th>(j)</th>
<th>(C_j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.000 000 000 000 000 000 000 000</td>
<td>14</td>
<td>0.000 001 133 027 232 0</td>
</tr>
<tr>
<td>2</td>
<td>0.577 215 664 001 539 2</td>
<td>15</td>
<td>-0.000 000 205 633 841 7</td>
</tr>
<tr>
<td>3</td>
<td>-0.655 878 671 530 253 8</td>
<td>16</td>
<td>0.000 000 006 116 095 0</td>
</tr>
<tr>
<td>4</td>
<td>-0.042 002 933 034 095 2</td>
<td>17</td>
<td>0.000 000 005 002 075 5</td>
</tr>
<tr>
<td>5</td>
<td>0.166 538 611 382 291 5</td>
<td>18</td>
<td>0.000 000 001 181 274 6</td>
</tr>
<tr>
<td>6</td>
<td>-0.042 197 734 555 844 3</td>
<td>19</td>
<td>0.000 000 000 104 342 7</td>
</tr>
<tr>
<td>7</td>
<td>-0.009 621 971 527 877 0</td>
<td>20</td>
<td>0.000 000 000 007 782 3</td>
</tr>
<tr>
<td>8</td>
<td>0.007 218 943 346 663 8</td>
<td>21</td>
<td>-0.000 000 000 003 656 8</td>
</tr>
<tr>
<td>9</td>
<td>-0.001 165 167 591 859 1</td>
<td>22</td>
<td>-0.000 000 000 000 510 0</td>
</tr>
<tr>
<td>10</td>
<td>-0.000 215 241 674 114 9</td>
<td>23</td>
<td>-0.000 000 000 000 020 0</td>
</tr>
<tr>
<td>11</td>
<td>0.000 128 050 282 388 2</td>
<td>24</td>
<td>0.000 000 000 000 005 4</td>
</tr>
<tr>
<td>12</td>
<td>-0.000 020 134 854 780 7</td>
<td>25</td>
<td>0.000 000 000 000 001 4</td>
</tr>
<tr>
<td>13</td>
<td>-0.000 001 250 493 482 1</td>
<td>26</td>
<td>0.000 000 000 000 000 1</td>
</tr>
</tbody>
</table>

ガンマ関数 \(\Gamma(x) \) の計算法

① \(x \) が整数の場合

\[\Gamma(1) = 1 \]
\[\Gamma(x) = (x-1)! \quad (x \geq 2) \]

② \(0 < x < 1 \) の場合

\[h(x) = \frac{1}{\Gamma(x)} = \sum_{j=1}^{26} C_j x^j \]

より算出する。\(C_j \) の値は表-4 に示す。

③ \(x > 1 \) (整数以外の場合)

\[n = [x] \quad z = x - n \quad \text{として} \]

\[\Gamma(z) = (n-1+z)(n-2+z) \cdots (1+z) \cdot \Gamma(z) \]

より算出する。\(\Gamma(z) \) の値は上記 ① より求める。

ダイガンマ関数 \(\psi(x) \) の計算法

① \(x \) が整数の場合

\[\psi(1) = -\gamma \]
\[\psi(x) = -\gamma + \sum_{j=1}^{x-1} \frac{1}{j} \quad (x \geq 2) \]

ただし、\(\gamma = 0.577 215 665 \) (オイラーの定数)

② \(0 < x < 1 \) の場合

\[\psi(x) = -\frac{1}{\Gamma(x)} \cdot \Gamma(x) = -\frac{h'(x)}{h(x)} \]
\[= -\sum_{j=1}^{x-1} \frac{j C_j x^{j-1}}{\sum C_j x^j} \]

より算出する。

③ \(x > 1 \) (整数以外の場合)

\[n = [x] \quad z = x - n \quad \text{として} \]

\[\psi(x) = \frac{1}{(n-1+z)} + \frac{1}{(n-2+z)} + \cdots \]
\[+ \frac{1}{1+z} + \frac{1}{z} + \psi(z) \]

より算出する。\(\psi(x) \) は上記 ② より求める。

トライガンマ関数 \(\psi'(x) \) の計算法

① \(x \) の整数の場合

\[\psi'(1) = \xi(2) = \sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{6} \]

\[\psi'(x) = \xi(2) - \frac{1}{2^2} - \frac{1}{3^2} - \cdots \]
\[- \frac{1}{(x-1)^2} \quad (x \geq 2) \]

② \(0 < x < 1 \) の場合

\[\psi'(x) = \frac{h'(x)^2 - h(x) h''(x)}{h(x)^2} \]
\[= \left\{ \sum_{j=2}^{\infty} j C_j x^{j-1} \right\}^2 - \left\{ \sum C_j x^j \right\} \]
\[\sum_{j=2}^{\infty} j (j-1) C_j x^{j-2} \]

より算出する。

③ \(x > 1 \) (整数以外の場合)

\[n = [x] \quad z = x - n \quad \text{として} \]

\[\psi'(x) = \psi(z) - \frac{1}{z^2} - \frac{1}{(x+1)^2} - \cdots \]
\[- \frac{1}{(x+n-1)^2} \]

より算出する。\(\psi(z) \) は上記 ② より算出する。

付録-2

歩行トリップ長に関するさまざまな考え方については参考文献 16) の pp. 217～223 に記されている。特に式 (2) が「出発地から一定の距離を離れるごとに、単位距離につき、一定の割合で行動がストップすること」を仮定した個人の行動モデルであることがこの文献により裏付けられている。

参考文献

1) 交通工学研究会：住宅地等における自動車利用の実態に関する調査報告書，昭和43年，
4) “Parking” 1957, ENO Foundation.

13) 村田隆裕：貨物交通の歩行距離, 科警研報告, 交通編, 18 巻 1 号, 1977.

14) 村田隆裕：都市中心部における歩行距離, 科警研報告, 交通編, 19 巻 1 号, 1978.

（1983.2.23 受付）