降伏部材選択方式によるトラス構造の
最適弾塑性設計法に関する一考察

OPTIMAL ELASTIC-PLASTIC DESIGN OF TRUSS
BY SELECTING THE YIELDING MEMBERS

石川信隆*・香月 智**・三原 敏治***・古川 浩平****

By Nobutaka ISHIKAWA, Satoshi KATSUKI, Tetsuji MIHARA and Kohei FURUKAWA

This study presents a sequential linear programming approach for the optimal elastic-plastic design of truss structures under the ductility factor and the ultimate load factor constraints. Little or no attempt has been made to generally cast the optimal elastic-plastic design of skeletal structures. The method is first formulated by the SLP primal and dual problems for the optimal elastic-plastic design using the holonomic elastic-plastic analysis and the limited ductility constraints. Then, a sensitivity analysis based on the shadow cost concept is applied to select the yielding members and to introduce their plastic deformations. Truss structures are designed to illustrate the applicability of the approach.

1. 緒 言

近年、国内外の構造物の設計法は許容応力度設計法と構造物あるいは部材の塑性域での応答を期待する塑性設計法と並列的あるいは直列的に行われる傾向となって

いる。わが国の昭和55年度改訂の建築基準法"でも、

塑性解析による保有耐力の検討を2次設計として一部の

建物に対して義務づけている。その設計の根拠は大地震

時において構造物のねばり、つまり塑性率に期待するこ

とにより構造物の安全を図ろうとするもので、通常の使

用設計荷重レベルに対して許容応力度設計法により、

異常時の終局荷重レベルに対しては塑性解析または弾塑

性増分解析により検討することを規定している。

一方、経済性と安全性を同時に追求する最適設計法に

関する研究に関しては、従来、構造物の挙動を弾性体と

みなして、通常の使用設計荷重レベルにおける制約を考

慮したいわゆる最適弾性設計と、構造物の挙動を塑性体

と仮定して、終局荷重レベル以前で塑性崩壊しないよ

うな制約を考慮したいわゆる最適塑性設計に関する研究

がそれぞれ別個に数多く行われてきた。しかし、構造物

の挙動を弾塑性体と考えて塑性率制約を考慮した最適弾

塑性設計法に関しては、Maierが将来展望としてRC

構造に対してその必要性を述べているほかに、地震荷重

を対象とした山田・家村・古川・日南による耐震設計

および森・石川・西野による鋼橋脚を取り扱ったもの

があるにすぎず、静的荷重を対象とした最適弾塑性設計

についてはほとんど皆無といって差し支えない。

本研究は、静的荷重における塑性率制約および終局荷

重制約を考慮した最適弾塑性設計法の開発を企図し、そ

の第一歩としてトラス構造を対象として降伏部材を逐次

選択していく方法を提案するものである。すなわち、そ

の方法はまずホロノミック弾塑性解析の基本条件を用

い、降伏部材選択方式による弾塑性設計法の開発を試み、

次いで逐次線形計画法（SLP）の主問題と対偶問題に

による定式化を行った。設計手順としては、まず弾塑限界

設計を行い、降伏状態に達した部材の中から目的関数（重

量）を最も改良するように対偶変数を用いた感度解析に

より降伏部材の選択を行い、その部材の塑性形変を発生

させ、最終的に降伏部材が得られなくなるとき計算を終

了するものである。

本設計法の妥当性と応用性を示すために3部材トラス
2. 最適弾塑性設計の基本式

（1）ホロノミック弾塑性解析の基本式

弾塑性解析手法には大別して2つの方法があり、そのためホロノミック弾塑性解析で、全変形理論に基づき過去の荷重履歴と無関係にある荷重レベルでの構造物の弾塑性変形状態を求めるもので、除荷の影響を無視しているが設計問題への適用が可能である。第2の方法はいわゆる弾塑性増分解析法で、ひずみ増分理論に基づき荷重履歴に依存し、除荷の影響をも考慮しながら逐次荷重増・変形関係を追跡するもので、解の厳密性はあるが設計問題への適用は困難である。よって、本研究では設計問題への適用可能なホロノミック弾塑性解析を用い、その基本条件を示せば以下のようにになる。

\[C^T Q = a_0 F \] (1)

\[q = Cu \] (2-a)

\[q = q^* + q^e \] (2-b)

\[q^* = N \lambda_\lambda \] (3)

\[\phi = N^T Q - R \geq 0 \] (4)

\[\phi \lambda = 0 \leq N^T Q - R \geq 0 \] (5)

(6)

ここに、式（1）は部材内力 \(Q \) が荷重力 \(F \) と荷重履歴レベル（設計荷重係数 \(a_0 \) ）でつり合うという平衡条件式で、式（2-a）は部材内力 \(Q \) に対応する内変形 \(q \) が荷重レベル \(F \) と荷重履歴レベル（設計荷重係数 \(a_0 \) ）でつり合うという平衡条件式で、式（2-b）は全変形理論に基づき内変形 \(q \) が弾性変形 \(q^e \) と塑性内変形 \(q^p \) の和によって示すことを示す。式（3）はフックの法則に従い弾性内変形 \(q^e \) が集和性柔弾性マトリックス \(k^{-1} \) によって内力 \(Q \) と線形関係にあることを示し、式（4）は塑性変形 \(q^p \) が降伏線（\(\phi = 0 \)）の法線方向に発生することを示し、単位法線マトリックス \(N \) に塑性変形の大きさを表す塑性係数ベクトル \(\lambda \) を乗じたものとなる。式（5）は塑性化された降伏条件式で、部材内力 \(Q \) が降伏線の内側（\(\phi \leq 0 \)）になければならないことを意味する。式（6）は、いわゆる塑性流れ条件を示すもので、降伏関数ベクトル \(\phi \) が \(\phi = 0 \) で、塑性係数ベクトル \(\lambda \) が \(\lambda \geq 0 \) であるので、各要素の要素 \(\phi \lambda \) に対して次の式（7）が成立している。

（i） \(\phi \lambda = 0 \) のとき \(\lambda = 0 \)

（ii） \(\phi \lambda = 0 \) のとき \(\lambda \leq 0 \)

式（7-a）は、（i） \(\phi \lambda = 0 \) （弹性範囲）のとき \(\lambda = 0 \) （塑性変形は発生しない）となる条件であり、（ii）逆式（7-b）は \(\phi = 0 \) （塑性変形のとき \(\lambda \leq 0 \) （塑性変形が発生する）となる条件を意味する。ここに、式（1）〜式（7）までの記号は次のとおりで、\(C^*, \ C \) 平衡マトリックスおよび塑性マトリックスに相当する外向き法線マトリックスに相当する
ここで、問題は非線形不等制約 \(A(x) \leq 0 \) の中的どれを取り入れることが目的関数を最適解に近づけることができるかを判断することである。最初すべての制約がアクティブでない \(\phi = B(x) \leq 0, \lambda = 0 \) として式（11）を解く。この設計を弾性限界設計と呼ぶ。これは通常の非線形設計における許容応力制約の代わりに降伏応力制約を考慮した場合に合致する。得られた解 \(x_0 \) においてある一部の制約 \(r \) がアクティブ \(\phi_r = 0 \) になった場合には非線形不等制約のみが式（11）の中選ばれ、式（11）を解くことになる。

次に、2 つの部材 \(r_t, r_T \) が同時にアクティブ \(\phi_{t}=0, \phi_{T}=0 \) になった場合、非線形不等制約 \(\lambda_t, \lambda_T \) のうちどちらを選ぶべきかを考える。この基本的考え方として \(\phi_{t}=0, \phi_{T}=0 \) のどちら方が目的関数をより改良できるかというように考察される。降伏圧縮 \(r_{s}, \phi \) がアクティブになった状態を考える。

ここで、上式のラグランジュ関数を作ると次式のようになる。

\[
L = W + \beta_t B_t(x) + \beta_T B_T(x)
\]

ただし、\(\beta_t, \beta_T \) は非線形不等制約の \(\lambda_t, \lambda_T \) のうちどちらの目的関数をよりも改良できるかというように考えられる。Kuhn-Tucker 条件が成立する。

\[
\Delta W + \beta_t \Delta B_t(x) + \beta_T \Delta B_T(x) = 0 \quad \text{(14-a)}
\]

\[
\phi_t = B_t(x) = 0 \quad \text{および} \quad \phi_T = B_T(x) = 0 \quad \text{(14-b)}
\]

t については 2 つの相対値である。最適解 \(x_t \) においては次式のような Kuhn-Tucker 条件が成立する。

\[
\Delta W + \beta_t \Delta B_t(x) + \beta_T \Delta B_T(x) = 0 \quad \text{(14-a)}
\]

\[
\phi_t = B_t(x) = 0 \quad \text{および} \quad \phi_T = B_T(x) = 0 \quad \text{(14-b)}
\]

ただし、

\[
\Delta W = \left| \frac{\partial W}{\partial x_t} \right|, \Delta B_t(x) = \left| \frac{\partial B_t}{\partial x_t} \right|
\]

\[
\Delta B_T(x) = \left| \frac{\partial B_T}{\partial x_t} \right|
\]

式（14-a）において \(| \Delta W | \) は図2に示すように相対値 \(x_t \) における目的関数の改良方向を示す法線ベクトルであり、\(\Delta B_t(x) \) の非線形変状態における降伏条件 \(\phi_t = 0 \) および \(\phi_T = 0 \) の法線ベクトルを示す。よって、現在の最適解 \(x_t \) における \(x \) の増分 \(\Delta x \) による目的関数の改良量 \(dW \) は次のように表される。

\[
dW = | \Delta W | \Delta x
\]

\[
= -\beta_t | \Delta B_t | \Delta x - \beta_T | \Delta B_T | \Delta x
\]

\[
= -\beta_t \Delta B_t - \beta_T \Delta B_T \quad \text{(15)}
\]

ここで、上式の \(\Delta B_t, \Delta B_T \) は以下のように求められる。

まず図2のA領域は弾性設計領域であり、B領域またはC領域は非線形変状 \(\lambda_t \geq 0 \)、または \(\lambda_T \geq 0 \) を許す領域である。さらにD領域は \(\lambda_t \geq 0 \) および \(\lambda_T \geq 0 \) を同時に許す領域であり、それぞれ次の条件式を満たす。

\[
N^c - R x \leq 0 \quad \text{(10-g)}
\]
図2 降伏部材選択のための判定

A 領域：\(\phi_1(\lambda_1=0, \lambda_2=0) = B_1(x) \leq 0 \) \(\phi_1(\lambda_1=0, \lambda_2=0) = B_1(x) \leq 0 \) \(\phi_1(\lambda_1=0, \lambda_2=0) = B_1(x) \leq 0 \) \(\phi_1(\lambda_1=0, \lambda_2=0) = B_1(x) \leq 0 \)
\(\phi_1(\lambda_1=0, \lambda_2=0) = B_1(x) \leq 0 \)

B 領域：\(\phi_1(\lambda_1\geq0, \lambda_2=0) = B_1(x) + D_{11}(x) \lambda_1 = 0 \)
\(\phi_1(\lambda_1=0, \lambda_2=0) = B_1(x) + D_{11}(x) \lambda_1 = 0 \)

C 領域：\(\phi_2(\lambda_1=0, \lambda_2=0) = B_2(x) + D_{22}(x) \lambda_2 = 0 \)
\(\phi_2(\lambda_1=0, \lambda_2=0) = B_2(x) + D_{22}(x) \lambda_2 = 0 \)

D 領域：\(\phi_1(\lambda_1\geq0, \lambda_2\geq0) = B_1(x) + D_{11}(x) \lambda_1 + D_{12}(x) \lambda_2 = 0 \)
\(\phi_1(\lambda_1\geq0, \lambda_2\geq0) = B_1(x) + D_{11}(x) \lambda_1 + D_{12}(x) \lambda_2 = 0 \)

ここで、たとえば式（16-b）における\(\phi_1=0 \) の式は、
\(B_1(x) = -D_{11}(x) \lambda_1 \) もとに表わされる。いま前段階の値を
〜で示すと、\(B_1(x) = B_1(x) + dB_1 \) となり、式（14-b）より
\(B_1(x) = 0 \) であるので、増分量 \(dB_1 = dM_1(x) \lambda_1 \) となる。同様にそれぞれの増分量 \(dB_1 \) は次のように表

（i）\(\lambda_1 \) を選ぶ場合（B 領域へ移る場合）
\(dB_1 = -D_{11}(x) \lambda_1 \)
\(dB_1 = -D_{11}(x) \lambda_1 \)

（ii）\(\lambda_2 \) を選ぶ場合（C 領域へ移る場合）
\(dB_1 = -D_{11}(x) \lambda_1 + D_{12}(x) \lambda_2 \)
\(dB_1 = -D_{11}(x) \lambda_1 + D_{12}(x) \lambda_2 \)

ただし、\(S_1, S_2 \) はスラック変数である。
さて、塑性係数 \(\lambda_1, \lambda_2 \) およびスラック変数 \(S_1, S_2 \) は
未知であるので、ここでは \(\lambda_1 = \lambda_{10}, \lambda_2 = \lambda_{20}, S_1 = 0, S_2 = 0, \)
\(x = x_0 \) と仮定することにより次のような目的関数の改良
予測値を得る。
\(dW_1(\beta_1 D_1 + \beta_2 D_2) \)
\(dW_1(\beta_1 D_1 + \beta_2 D_2) \)

（20）

よって、上式によって求められる量のうち大きいかが、
目的関数をより多く改良できるという予測が得られる、
式（19）は弾性限界設計において導いたが、すでに数個
の降伏部材がある場合においても目的関数の改良予測式
（19）は次のような一般形に拡張できる。

（4）設計基本式の SLP 化
式（10）の設計基本式は非線形計画問題であり、各式
を線形近似して逐次線形計画問題として解くこととする、
その際、式（10-b）の非線形性が強く、この線形
近似の精度を上げるため次式のように設計変数 \(x_i \) の逆
変数 \(y_i \) を用いることにした。
\(y_i = 1/x_i \)

（21）

よって、式（10）の設計基本式を逆変数 \(y_i \) によってテ
イラー展開し 1 次項をとれば、次のような主問題形式式
としての SLP による設計基本式が得られる。

（22）

目的関数：\(z = -d^T y - \min \)

制約条件：
\(\phi(x, y, \lambda) = 0 \)
\(\phi(x, y, \lambda) = 0 \)

ただし、\(d^T = [a_1/y_1, a_2/y_2, \ldots, a_n/y_n] \)

上式の中で添字 \(s \) はアクティブな部材を示し、添字 \(n \) は
アクティブでない部材を示す。また \(\varepsilon \) は move limit
の係数で、次式により決定される。
\(\varepsilon = \max(\varepsilon_s, \varepsilon_n) \leq \varepsilon_0 \)

ここで \(\varepsilon_0 \) は目的関数 \(z \) の変化率、\(\varepsilon_n \) は変数 \(y \) および \(\lambda \)
の変化率の最大値であり、また \(\varepsilon_s \) は move limit の初期
値で、\(\eta \) は move limit の低減率である。さらに式（22）
3. 設計 手 順

以上の設計基本式を用いた最適弾塑性設計は、以下の設計手順で行われる。

codon
表-1 3部材トラスの設計結果

<table>
<thead>
<tr>
<th>No.</th>
<th>μ_a</th>
<th>MEMBER 1</th>
<th>W_{EL}</th>
<th>X_{UP}</th>
<th>X_{PD}</th>
<th>X_{UP}</th>
<th>X_{PD}</th>
<th>MEMBER 1</th>
<th>W_{EL}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>±1.00</td>
<td>0.00</td>
<td>253.7</td>
<td>0.789</td>
<td>0.046</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>±1.06</td>
<td>0.01</td>
<td>260.4</td>
<td>0.767</td>
<td>0.032</td>
<td>0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>±1.12</td>
<td>0.02</td>
<td>256.8</td>
<td>0.747</td>
<td>0.043</td>
<td>0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>±1.19</td>
<td>0.03</td>
<td>253.2</td>
<td>0.728</td>
<td>0.040</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>±1.25</td>
<td>0.04</td>
<td>249.6</td>
<td>0.710</td>
<td>0.046</td>
<td>0.04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>±1.31</td>
<td>0.05</td>
<td>246.0</td>
<td>0.692</td>
<td>0.052</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>±1.62</td>
<td>0.10</td>
<td>228.6</td>
<td>0.606</td>
<td>0.050</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>±1.94</td>
<td>0.15</td>
<td>224.5</td>
<td>0.577</td>
<td>0.062</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Plastic Design</td>
<td>224.5</td>
<td>0.577</td>
<td>0.062</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図-5 3部材トラスの設計結果

図-6 3部材トラスの増分解析結果
適性設計による初期値の設定法および move limit の妥当性が確認できる。また双対問題の主問題による解は完全に一致したが、双対問題の場合の計算時間は主問題に比し約半分に短縮できることが認められた。この差は設計変数の増大に伴い顕著になると思われるので、本研究では以後双対問題を用いて設計を行った。

（2）計算例2：10部材トラスの設計

次に図8に示す2次不静定の10部材トラスを対象として弾性設計を行う。本例に対しては、表1に示すように最小断面制約の条件を2種類、許容許容性線を \(\mu_e = 1.0 \) （弾性限界設計）、\(\mu_e = 1.875 \) （許容許容性線を \(0.1 \% \)）、\(\mu_e = 5.375 \) （許容許容性線を \(0.5 \% \)）の3通りに変化させて計算を行った。得られた設計結果を表3（a）、（b）に示し、またこれらの設計値に対する弾性線性解析の結果を図9（a）、（b）に荷重係数 \(a \) と上端の水平変位 \(x \) との関係によって示した。

a）降伏部材選択方式の妥当性

このトラスは2次不静定であるので、全部で2つの部材が降伏部材として選ばれる。表3（a）のCase A1をみると部材①、⑦が同時に \(\mu_e = 1.0 \) に達し、降伏していることがわかる。次にCase A2では部材⑦の \(\mu_e = 1.875 \) の方が部材②の \(\mu_e = 1.277 \) よりも大きく、部材⑦が降伏し、次いで部材②が降伏していることがわかる。Case A3はCase A2と同様で、部材②が降伏し、次いで部材⑦が降伏している。このことは図9（a）の増分解析の結果と一致している。これより本研究で提案した降伏部材選択手法の妥当性が確認できる。

b）許容許容性線 \(\mu_e \) に設計に与える影響

3部材トラスの計算例においては、許容許容性線を大きくなることにより構造体積の減少がみられたが、本計算例では表3（a）、（b）の右欄にみられるように、構造体積の減少の割合は非常に少ない。特にCase A2とA3では、同じ構造体積となっている。しかし、図9（a）よりわかるように、Case A3の方がCase A2に比してきわめてグロスリティが大きな設計となっていることが認められる。これは表3（a）の最適断面積 X の分布に著しく影響を与えている。
(a) Case A

(b) Case B

図10 部材トラスの増分解析結果

からみて応力再配分により Case A 3 では断面配分がより均等化されているためと思われる。

c) 最小断面積制約による影響

表－3(a)，(b)の右欄の体積 V を比較すると，当然ながら表－3(b)の方が大きくなっている。これは最小断面積制約がアクティブになっていいため部材が数多く存在するためである。

図－9(b)から明らかのように，最小断面積制約の影響が大きくなると，許容許限性を変化させても Case B 2 と Case B 3 の差は小さく，許容許限性がダクティリティーに与える影響はあまりないことがわかる。

表－3(b)および図－9(b)に示すように，この例では降伏部材として先に部材①が，次いで部材②が選ばれている。このように最小断面積制約が異なれば，降伏部材やその選択順序も変化するが，本設計法ではこれらのすべての設計条件に対しても適用できる。

5. 結 語

本研究で示した手法により静的荷重における最適弹塑性設計が可能となった。本研究で得られた成果を要約すると以下のようになる。

（1）双対変数を用いた感度解析により降伏部材を選択する手法を考案し，部材塑性率制約を考慮した最適弹塑性設計の手法を確立できた。

（2）本設計手法で得られた設計結果とそれに対する弹塑性増解析の結果は降伏部材の選択順序に至るまで一致し，本研究で提案した手法が妥当であることが認められた。

（3）最適弹塑性設計によって得られる設計は，最適弹塑性限界設計と最適弹塑性設計の間で在し，許容塑性に応じて連続した解が得られる。

（4）許容塑性率 μ=1.0 の設計（弹塑性限界設計）の結果は終局荷重および降伏応力を（1/材料安全率）倍して得られた従来の最適弹塑性設計の結果と一致する。

（5）許容塑性率を極端に大きく与えると最適弹塑性設計の結果は最適弹塑性設計に一致する。

（6）許容塑性率を大きくすると，得られる設計の構造体積は減少する。しかし，不静定次数が多くなると応力再配分の影響により，その減少の度合いは小さくなる。

（7）一般に許容塑性率を大きくするとダクティリティーに富んだ設計が得られる。しかし，最小断面積制約を厳しくするとその傾向は小さくなる。

なお，本研究では弹塑性設計法の開発に力点を置いたので，使用荷重時の応力や変形制約を無視した。また座屈の影響については，図－1 の σ_y および図－4 の σ_y の値に示すように圧縮部材の降伏応力を引張部材の値より小さくすること，あるいは表－3 の Case B に示すように最小断面積制約を付加することで考慮したが，さらに細長比を用いた表現による座屈の影響については現在検討中である。

本計算には防衛大学校電子計算機 HITAC-200 H を使用し，図面の作成には永森由生のご助力を得たことを付記し，謝意を表する。

参考文献
1) 建築基準法施行令，第82条の4，昭和55年改正令第196号。
3) 山田善一・家村喜和・古川浩平・坂本幸三：塑性率制約に基づく最適弹塑性耐震設計法に関する研究，土木学会
6) Kirsch, U. (山田善一・大久保隆二監訳)：最適構造設計，丸善，p. 16，昭和58年10月。
7) 吉林隆：線形計画入門，産業図書，pp. 98–104，昭和55年10月。
8) 小野勝章：計算を中心とした線形計画法，文祥堂，pp. 11–14，1976。

（1984.3.26・受付）