落石覆工への落石のエネルギー伝達率に関する基礎的考察

園田住臣*・佐藤紳志**・石川信隆***
植谷 浩****

本研究は、エネルギー的観点から落石覆工の破壊に対する安全性評価を行うため、落石覆工への落石のエネルギー伝達率を基礎的に把握しようと試みたものである。すなわち、まず落石一サンドクッション一落石覆工という3者関係を3質点系モデルに置換したうえで、落石覆工が吸収すべきエネルギーを時刻歴応答として算定した。その際、解析モデルに用いるパラメータを過去の実験データを基に動的同定手法により決定し、各種の落石条件や各種のサンドクッション（山砂、川砂、砕砂など）に適用できる回帰式を導いた。最後に、落石覆工へのエネルギー伝達率を用いた安全性照査法の一例を示した。

Keywords: rock-shed, energy transmission factor, dynamic identification

1. 緒 言

現在、落石覆工（ロックシェッド）は、落石の衝撃力を静的な力に置き換えて許容応力度設計法によって設計されているが、設計荷重をはるかに超えるような巨岩に対して、落石覆工の破壊に対する安全性の照査を行うためには、弾性理論に基づく許容応力度設計法によってこれを照査することはかなり困難である。すなわち、落石覆工の破壊に対する安全性照査法としては、落石のもの運動エネルギーに基づいたエネルギー的観点から、落石覆工の終局限界状態を調べることが合理的であると思われ、そのためには、落石覆工へ伝達されるエネルギーを知ることが必要である。落石覆工に作用する外力エネルギーとしては、落石が衝突時にも運動エネルギーと、落石覆工上のサンドクッション等の死荷重によるエネルギーの2つが考えられる。このうち落石のもの運動エネルギー、サンドクッション等によって衝突時にその大小が吸収され、残りのエネルギーが落石覆工で伝達されると考えられる。したがって、落石覆工へ伝達される落石の運動エネルギーはどれくらいか、そのエネルギー伝達率が解明されれば、落石覆工の安全性をエネルギー的観点から照査できるものと思われる。著者ら**は、先にエネルギー基準によるサンドクッション厚の算定法を提示したが、ここではサンドクッション厚を一定（例えば、h=90cm）とし、サンドクッションの種類（山砂、川砂、砕砂など）や落石覆工の種類（鋼製かRC製か）などによって、エネルギー伝達率がどのように変わるかを調べるものである。

すなわち、本研究は、落石覆工の安全性をエネルギーに点観点から照査することを目的として、落石覆工へ伝達されるエネルギーの割合、すなわちエネルギー伝達率を基礎的に把握しようと試みたものである。そのため、まず落石一サンドクッション一落石覆工という3者関係を3質点系モデルに置換したうえで、落石覆工が吸収すべきエネルギーを時刻歴応答として算定した。その際、解析モデルに用いるパラメータを過去の実験データを基に動的同定手法により決定し、各種の落石条件や各種のサンドクッション（山砂、川砂、砕砂など）に適用できる回帰式を導いた。最後に、鋼製およびRC製の落石覆工へのエネルギー伝達率を算定するとともに、鋼製落石覆工に対する安全性照査法の一例を示し、この分野における基礎的資料を提供しようとしたものである。

なお、従来、落石覆工へのエネルギー伝達率に関する研究としては、金沢大学の辰巳実験室における鉄塔式落石衝突実験による研究1および著者ら**のサンドクッション厚の算定法に関する解析的研究等があるにもかかわらず、また園田*は、ロックシェッドの終局限界状態を曲げ破壊と仮定して、破壊時におけるエネルギー吸収を考慮した落石の衝撃力の評価方法を検討している。

2. 解析モデルとエネルギー伝達率の算定式

落石覆工への落石のエネルギー伝達率を算定すための解析モデルを提示するにあたり、以下の仮定を用いる。

（1） 図1-1（a）のように、落石一サンドクッション一落石覆工の3者間のエネルギー伝達が行われ、基礎の地盤等への逸散は考えない。

（2） 上記の3者間を3質点系モデルに置換できるものとし、その力学特性を図1-1（b）のように弾性または弾性ひずみをダッシュボットを組み合わせたレオロジーモデルで表現できるものとする。

以上の仮定を基にして、図1-1（c）のような力をつり合いから3質点系モデルの運動方程式は次のように表

*正会員 防衛大学校助教 土木工学教室
**正会員 福 建大学教授 土木工学教室
***正会員 福 建大学教授 土木工学教室
****正会員 福 建大学教授 土木工学教室
†正会員 金沢大学助手 土木建設工学科
E: 入力エネルギー
U1: 吸収エネルギー
U2 = (E-U1): 伝達エネルギー

(a) エネルギーの伝達

(b) 3 質点系モデル

(c) 力のつりあい

図-1 エネルギー伝達率算定のための解析モデル

(a) 等価質量への置換
(b) 衝撃圧力の伝播

図-2 有効質量 m1, m2 の算定モデル

さら、

m1 \dot{x}_1 + c_1 (\dot{x}_1 - \dot{x}_2) + k_1 (x_1 - x_2) = m_2 g
m_{2a} \ddot{x}_2 + c_2 (\ddot{x}_2 - \dot{x}_2) + k_1 (x_2 - x_3) - c_3 (\dot{x}_2 - \dot{x}_3)
-k_3 (x_3 - x_2) = 0 \cdots \cd \n

（1）E = 1/2 \cdot m_1 \dot{x}_1^2
E = (1/2 \cdot m_2 \dot{x}_2^2)

3. 動的同定法による入力パラメータの決定

図-1の3質点系モデルに、m_1, m_2, m_3, k_1, k_2, k_3, c_1, c_2 の8つのパラメータが存在するが、このうち m_1, m_2, m_3, k_3 は以下のように比較的容易に決めることができる。しかし、k_1, k_2, c_1, c_2 の値については予め与えることがかなり困難であるので、これらを動的同定法により決定するものとした。

（1）m_1, m_2, m_3, k_1, k_2 の決定法

m_1 については落石の質量そのものとして、m_2, m_3 については、まず図-2(a)に示すように落石覆工を平面骨組モデルとし、各節点にサンドクッションの死荷重を
含めた集中質量を与えたときの固有周期を計算することにより（サンドクッション+落石覆工）系の等価質量
\[M = (m_2 + m_3) \]
を求めることができる。このうち、落石覆工の等価質量 \(m_3 \) については落石覆工のみを集中質量とした固有値解析から求める。サンドクッションの有効質量 \(m_2 \) は \(m_2 = M - m_3 \) で計算される。ここでは、サンドクッションについては図-2(b)のように、落石の衝突時に衝撃力の伝ばを受け振動する領域（その領域の有効質量を \(m_{st} \) とする）と、衝撃力の伝播範囲外で落石覆工とともに振動する領域（その領域の有効質量を \(m_{st} \) とし、\(m_2 = m_{st} - m_{st} \) である）が存在すると仮定し、それらを区別して取扱う。すなわち、サンドクッションとして挙動する質点の有効質量は \(m_{st} \) であり、落石覆工側の有効質量は \(m_2 + m_{st} \) とした。なお、衝撃土圧の分散勾配については、過去の実験結果より静的土圧の分散勾配より小さいことが指摘されており、1:0.6 程度が実状に合っていると考えられる。したがって、ここでは衝撃土圧の分散勾配として、\(\beta = 0.5 \) を用いることとした（図-2参照）。

また、落石覆工の剛性 \(k_3 \) は、図-3のように落石覆工を平面骨組モデルに置換（縦断方向の剛性については主架梁部で除して平均の値を用いている）したうえで塑性増分解析を行い、その荷重-変位曲線の傾きを次のように与えた。

（i）\(\Delta P > 0 \)：載荷時

\[x_2 < \delta_1 \] のとき \(k_3 = k_1 \)

\[\delta_1 \leq x_2 < \delta_2 \] のとき \(k_3 = k_2 \) \……………（5a）

\[\delta_2 \leq x_2 \leq \delta_3 \] のとき \(k_3 = k_3 \)

（ii）\(\Delta P < 0 \)：除荷時

\(k_3 = k_1 \) \……………（5b）

ただし、\(x_2 \)：落石覆工側の変位で、図-1の3節点系モデルによる動的塑性解析から算定される。

\(\delta_1, \delta_2, \delta_3 \)：平面骨組モデルの静的塑性解析によって得られる第1、第2、第3塑性ヒンジ発生時の変位を示す。

\(K_1, K_2, K_3 \)：第1、第2、第3塑性ヒンジ発生時までの各段階における落石覆工の剛性を示す。

（2）動的同定法による \(k_1, k_2, c_1, c_2 \) の決定

ここでは、サンドクッションのモデル化に必要なパラメータ \(k_1, k_2, c_1, c_2 \) の4つを、落石衝突実験で得られる土圧衝突力 \(P_{st} \) と図-4(a)に示す2節点系モデルによる衝撃力 \(P_{at} \) とが、ほぼ一致するように（図-4(b)参照）、最適化手法による動的同定法を採用して決定する。

すなわち、その基本式は以下のようになる。

未知数：\(k_1, k_2, c_1, c_2 \)

目的関数：\(Z = \Sigma (P_{st} - P_{at})^2 \to \min \) 。（6a）

制約条件：\(m_2 \ddot{x}_1 + c_1 (\dot{x}_1 - \dot{x}_2) + k_1 (x_1 - x_2) = m_3 g \)

\[m_2 \ddot{x}_2 + P_{at} - c_2 (\dot{x}_2 - \dot{x}_3) - k_2 (x_2 - x_3) = 0 \) 。（6b）

\[k_1 \geq 0, k_2 \geq 0, c_1 \geq 0, c_2 \geq 0 \) 。（6c）

ただし、\(P_{at} \)：落石衝突実験で測定された土圧衝撃力。

\[P_{at} \]：2節点系モデルで計算される土圧衝撃力式（6）の解法にあたっては、準ニュートン法を採用する。その際、目的関数の修正方向は、2節点系モデルの時刻例数データに対する各種パラメータの感度解析の結果から求め、修正量決定のためのステップ幅 \(\alpha \) の決定については黄金分割法を用いている。この動的同定法についての計算手順を示せば、図-5のようになる。

以上で得られた8つの入力データを用いて、式（1）〜（4）を計算すれば、エネルギー伝達率 \(\eta \) が算定される。
4. 数値計算例

（1）エネルギー伝達率算定の妥当性の検討
まず、本法の妥当性を検討するために、金沢大学で行われた落石衝突実験の（重錘重量 $W=1.0 \text{t}$、落下高さ $H=10.0 \text{m}$）の図-6に示すような土圧衝撃力-時間曲線 $P_{\text{w}}(t)$に対する同定計算を行った。式（6）を用いてサンクションのパラメータ k_1, k_2, c_1, c_2 を求めると、図-7に示すような衝撃力-時間曲線の同定結果が得られ（繰り返し計算数 $n=82$ 回），

表-1 動的同定法による同定パラメータ

<table>
<thead>
<tr>
<th>n</th>
<th>$k_1 (\text{tf/m})$</th>
<th>$k_2 (\text{tf/m})$</th>
<th>$C_1 (\text{tf/s/m})$</th>
<th>$C_2 (\text{tf/s/m})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>200.0</td>
<td>200.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>82</td>
<td>309.0</td>
<td>4.9</td>
<td>9.1</td>
<td>27.2</td>
</tr>
</tbody>
</table>

n：繰返し計算数 (tf=9.8KN)

図-8 各エネルギーの時間的な変化

ほぼ良くシミュレートしていることがわかる。ただし、実際には重錘がサンクションに衝突してからサンクションの底面に衝撃圧が伝播するまでの時間（約10 ms）のタイムラグがある。ここではこれを考慮していない。

このとき得られたサンクションのパラメータ値を表-1に示すが、この表よりサンクション内のばね定数 k_2 が非常に小さく、c_1 がやや大きいことが注目される。これは、衝撃荷重が作用した時のサンクションの状態を粘弹性体と評価した方が良いことを示しており、落石対策便覧の評価式の粘弾性体と仮定することにはやや無理があると思われる。

次に、この値を用いて、実験の衝突実験における落石-サンクション-落石覆工（II型鋼を基に単純架）系のエネルギー伝達率の算定を行った。図-8は、落石の運動エネルギー E、サンクションの吸収エネルギー U_{ol}、落石覆工の吸収エネルギー U_{ol} の時間変化を示したもので、時刻約70（ms）で落石覆工への伝達エネルギーは、$U_{\text{ol}}=0.64 \text{(t} \cdot \text{m})$ と最大になり、したがって、このときのエネルギー伝達率は $\eta=6.4 \%$ と算定される。なお、この計算では落石覆工の応答曲線は弹性範囲内にあり、変形による履歴吸収エネルギー量は認められなかった。一方、衝突実験においてII型鋼梁のたわみから求めたエネルギー伝達率は $\eta=6.9 \%$ であり、本法による値と極めて良く一致しており、本法の妥当性が確認される。

（2）各種緩衝材のパラメータ値の比較

次に、3種類の砂（山砂、川砂、碎砂）の発泡スチロールを緩衝材とした場合を想定して、それぞれについて同定計算を行い、各パラメータ k_1, k_2, c_1, c_2 を求めた。
ここで使用した落石衝突実験の重錘条件は、全重錘重量 \(W = 3.0 \) t、落下高さ \(H = 10.0 \) mである。まず検討を行った3種類の砂の粒径加積曲線を図9に示す。

図9から、この実験で用いた山砂は、川砂や砂砂に比べて粒径が揺れていくことが認められる。一般に粒径が不均一な砂の場合には、大きい粒子の砂粒の間に小さい砂粒が詰まることにより、締め固まりやすい傾向にあると考えられる。したがって、山砂は他の砂に比べてあまり締め固まらないために、柔軟な緩衝材と見なしうると考えられ、実際に過去の吉田らの実験においても衝撃荷重の低減効果は3種類の砂の中で最も優れていることが確認されている。

図10, 11, 12はそれぞれ山砂、川砂、砂砂を、図13は発泡スチロールを緩衝材としたときの衝撃力を同定した結果を示したものであるが、4ケースとも比較的良好と同定できていることがわかる。3種類の砂について、それぞれ最大衝撃荷重は非常に異なっており、山砂、砂砂、川砂の順に大きくなっている。逆に衝撃荷重の時間的な減衰性に関しては山砂が最も小さく、荷重の継続時間が長くなる傾向にある。また、発泡スチロールについては3種類の砂に比べて最大衝撃荷重が非常に小さくなるだけ（山砂の約1/2）、荷重の継続時間が2～3倍に長くなるなど顕著な相違が認められる。

次に、これらの同定計算で得られた各パラメータの値を表2に示す。この表より、砂と発泡スチロールを比較すると、発泡スチロールの衝突部における弾性ばね係数 \(k_1 \) が小さく、逆に \(k_2 \) の値は大きい。また粘性減衰係数 \(c_1, c_2 \) が非常に小さいことが認められる。一方、砂についてはパラメータの値も種類別にかなり異なるが、4.1の考察で示したように、弾性ばね係数 \(k_1 \) の値がかなり小さくなる傾向にあることが認められる。また、衝突直後の最大衝撃荷重は、緩衝材の粘性減衰係数 \(c_2 \) の値が大きいほど大きくなる傾向にある。すなわち、式（6d）より衝突直後の応答量は、\(k_2 \) が\(k_2 \) が大きいので、衝撃荷重 \(P_p \) は \(k_2 \) が \(c_2 \) に大きく影響されるものと思われる。

（3）各種の砂のパラメータ値の回帰式

前節の計算例（重量 \(W = 3.0 \) t、落下高さ \(H = 10.0 \) m）の場合、砂の種類によってパラメータ値が異なることが明らかとなった。しかし、落石の条件（重量 \(W \) または落下高さ \(H \) の値）が違えばサンプールの応答性状が変るため、同じ種類の砂であっても当然パラメータは異なった値になるものと考えられる。したがって、本節では各種の砂のパラメータ値 \(k_1, k_2, c_1, c_2 \) を、落石の条件（重量 \(W \)、落下高さ \(H \) およびサンプールの厚さ）の3変数が多少変化しても、任意の状態にも適用しうるように一般式として表わすことを試みる。

すなわち、落石重量 \(W \)、落下高さ \(H \)、サンプールの厚さ \(h \)、サンプールの半径 \(r \) 、およびサンプールの厚さ \(h \) を変数とし、パラメータ値 \(k_1, k_2, c_1, c_2 \) を求める。
表-3 回帰分析に用いた実験ケース

<table>
<thead>
<tr>
<th>NO</th>
<th>棘石層厚m^1</th>
<th>落下高さm</th>
<th>グラウンド厚m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.3</td>
<td>5.0</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>10.0</td>
<td>0.9</td>
</tr>
<tr>
<td>3</td>
<td>0.3</td>
<td>15.0</td>
<td>0.9</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>20.0</td>
<td>0.9</td>
</tr>
<tr>
<td>5</td>
<td>1.0</td>
<td>5.0</td>
<td>0.9</td>
</tr>
<tr>
<td>6</td>
<td>1.0</td>
<td>10.0</td>
<td>0.9</td>
</tr>
<tr>
<td>7</td>
<td>1.0</td>
<td>15.0</td>
<td>0.9</td>
</tr>
<tr>
<td>8</td>
<td>1.0</td>
<td>20.0</td>
<td>0.9</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>5.0</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>3.0</td>
<td>10.0</td>
<td>1.2</td>
</tr>
<tr>
<td>11</td>
<td>3.0</td>
<td>15.0</td>
<td>1.2</td>
</tr>
<tr>
<td>12</td>
<td>3.0</td>
<td>20.0</td>
<td>1.2</td>
</tr>
</tbody>
</table>

山砂 hが、それそれぞれ異なる過去の実験データを9)（山砂、川砂、砂石ともに表-3に示す12ケースを選んだ）をもとに、次に示すような最適化手法により各パラメータの回帰式を求めることとする。

未知係数 a, b, c, d

目的関数 $Z=\Sigma (x_i-y_i)^2\rightarrow \text{min}$ 　　(13a)

回帰式 $y_i=a+\mu W+h_c, h$ 　　(13b)

ここに，y_i：それぞれ各パラメータ k_1, k_2, c_1, c_2 の回帰式の値。

x_i：同定計算により得られるパラメータ値を示す。

i：計算に用いた落石条件のケース数を示し，ここでは$i=1-12$である。

なお，実際の衝突実験では，同じ落石条件およびサンプル厚差層厚でも計測される衝突土圧波形は，ばらつきが大きい9)ので，ここでは同一の落石・サンプル厚差層厚の条件下で行った，多数回の実験データの平均波形を用いた。以上の計算手順により，各種の砂について求めた各パラメータの回帰式を次に示す。ただし，本回帰式の適用範囲は，$0.3t \leq W \leq 3.0t$, $5.0m \leq H \leq 20.0m$, $0.9m \leq h \leq 1.2m$である。

山砂 $c_1=7.70 \cdot W^{0.317} \cdot H^{0.410} - 0.146$
$c_2=4.30 \cdot W^{0.317} \cdot H^{4.22} - 0.104$
$k_1=20.6 \cdot W^{0.251} \cdot H^{0.266} - 0.273$
$k_2=2.90 \cdot W^{0.214} \cdot H^{0.416} - 0.090$

川砂 $c_1=5.33 \cdot W^{0.204} \cdot H^{0.457} - 0.080$
$c_2=15.4 \cdot W^{0.571} \cdot H^{0.433} - 0.883$
$k_1=72.6 \cdot W^{0.372} \cdot H^{0.356} - 1.00$
$k_2=1.70 \cdot W^{0.415} \cdot H^{0.138} - 1.100$

砂砂 $c_1=6.79 \cdot W^{0.250} \cdot H^{0.450} - 0.109$
$c_2=11.4 \cdot W^{0.515} \cdot H^{0.248} - 0.937$
$k_1=80.7 \cdot W^{0.354} \cdot H^{0.106} - 0.935$
$k_2=2.20 \cdot W^{0.779} \cdot H^{0.089} - 0.910$

ここで，図-14および図-15に，山砂と砂砂を用いた場合の衝突土圧波形について，回帰式による各パラメータを用いた場合と，実験で得た衝突土圧の平均波形との比較を示す。これらより，回帰式によるパラメータを用いた計算値は，実験で得た衝突土圧波形を比較的よくシミュレートしているものと考えられ，これらの回帰式はほぼ妥当であると思われる。

(4) 各種緩衝材における落石被工へのエネルギー伝達率

ここでは，まず4(2)4で求めた各種緩衝材のパラメータを用いて，それらを使用した場合の落石被工へのエネルギー伝達率の比較を行った結果を示す。落石の条件は同定計算で用いた実験条件と同様に，落石重量 $3.0t$, 落下高さ $10.0m$ として，落石被工としては，図-16に示す鋼製落石被工および図-17に示すRC落石被工の2通りについて検討した。ただし，鋼製落石被工の剛性については，縦断方向剛性係数の荷重分担は見込み，主桁1本当たるの剛性を弾塑性ばねとして評価した。また，RC落石被工の剛性については，縦断方向の単位長当たりの剛性を弾塑性ばねとして評価した。すなわち，それぞれ
表-4 鋼製およびRC落石覆工へのエネルギー伝達率

<table>
<thead>
<tr>
<th>落石覆工</th>
<th>緩衝材</th>
<th>山砂</th>
<th>川砂</th>
<th>砂砂</th>
<th>発泡スチロール</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼製落石覆工（図-15）</td>
<td>4.6</td>
<td>16.2</td>
<td>14.0</td>
<td>0.4</td>
<td></td>
</tr>
<tr>
<td>RC落石覆工（図-16）</td>
<td>3.8</td>
<td>7.0</td>
<td>5.9</td>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

（落石重量W=3.0t、落下高さH=10.0mの場合）

以上のデータをもとに、鋼製落石覆工およびRC落石覆工へのエネルギー伝達率を計算すると、表-4に示す値が得られた。表-4より、1）発泡スチロールが極めて優れたエネルギー吸収効果を示すこと、2）砕石の中では山砂が砂砂、川砂に比べて優れていることがどちらの落石覆工についても認められる。この結果より、優れた衝撃緩衝材が備えておくべき特性とは、緩衝材自体のもし性を小さく変形性に富んだ材料であることが必要であるといえる。ただし、衝突物に対して貫通されない程度の厚さは、少なくとも保持していなければならない。

また、3）鋼製落石覆工とRC落石覆工の比較を行うと、剛性が高いRC落石覆工へのエネルギー伝達率の方が小さいことがわかった。これは落石覆工の剛性が高いほど、緩衝材と落石覆工との透水率で反射されるエネルギー量が多くなるためと考えられる。したがって、当然の結果であるが、耐衝撃性が優れた落石覆工としては、仮に許容変形量が同じであるならば剛性が高い構造が望ましいといえる。

図-19 鋼製落石覆工のエネルギー伝達率の変化

次に、4.（3）で示したパラメータ回帰式を用いて、落石条件の変化とともに落石覆工へのエネルギー伝達率がどのように変わるか、図-16の鋼製落石覆工を対象として検討を試みた。

表-5および図-19に各種の砂を用いたときのエネルギー伝達率を示す。図-19より、1）落石条件が小さい
表-7 鋼製落石覆工の安全性照査の一例

<table>
<thead>
<tr>
<th>落石重量</th>
<th>落下高さ</th>
<th>適用されるエネルギー伝達率</th>
<th>安全性照査</th>
<th>落石重量</th>
<th>落下高さ</th>
<th>適用されるエネルギー伝達率</th>
<th>安全性照査</th>
</tr>
</thead>
<tbody>
<tr>
<td>W (t)</td>
<td>H (m)</td>
<td>γ_{0.1} E</td>
<td>Safe</td>
<td>U_{0.1}</td>
<td>γ_{0.1} E</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>0.3</td>
<td>5.0</td>
<td>0.01</td>
<td>Safe</td>
<td>0.03</td>
<td>0.03</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>0.3</td>
<td>10.0</td>
<td>0.03</td>
<td>Safe</td>
<td>0.09</td>
<td>0.09</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>0.3</td>
<td>15.0</td>
<td>0.06</td>
<td>Safe</td>
<td>0.15</td>
<td>0.15</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>1.0</td>
<td>20.0</td>
<td>0.09</td>
<td>Safe</td>
<td>0.22</td>
<td>0.22</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>1.0</td>
<td>15.0</td>
<td>0.38</td>
<td>Safe</td>
<td>0.24</td>
<td>0.24</td>
<td>Safe</td>
<td>Safe</td>
</tr>
<tr>
<td>1.0</td>
<td>20.0</td>
<td>0.62</td>
<td>Fail</td>
<td>0.72</td>
<td>0.72</td>
<td>Fail</td>
<td>Fail</td>
</tr>
<tr>
<td>3.0</td>
<td>5.0</td>
<td>0.33</td>
<td>Safe</td>
<td>1.38</td>
<td>1.38</td>
<td>Fail</td>
<td>Fail</td>
</tr>
<tr>
<td>3.0</td>
<td>10.0</td>
<td>1.32</td>
<td>Fail</td>
<td>4.86</td>
<td>4.86</td>
<td>Fail</td>
<td>Fail</td>
</tr>
<tr>
<td>3.0</td>
<td>15.0</td>
<td>3.11</td>
<td>Fail</td>
<td>9.36</td>
<td>9.36</td>
<td>Fail</td>
<td>Fail</td>
</tr>
<tr>
<td>3.0</td>
<td>20.0</td>
<td>5.88</td>
<td>Fail</td>
<td>14.10</td>
<td>14.10</td>
<td>Fail</td>
<td>Fail</td>
</tr>
</tbody>
</table>

(14) さらに、耐衝撃性に優れた緩衝材を使用すれば、設計条件よりかなり大きな落石条件に対して（W = 1.0 t, H = 20.0 m あるいは W = 3.0 t, H = 5.0 m など）安全である可能性が十分あることを示している。

5. 結 論

本研究は、鋼製およびRC製の落石覆工へのエネルギー伝達率を算定する手法を開発するとともに、エネルギー基準による落石覆工の安全性照査の一例を示したものである。本研究の成果を再度列挙すると以下のようになる。

（1）サンドクッションの力学的パラメータを最適化手法による動的同定法を用いて、ほぼ良いシミュレートできことが認められた。

（2）3 章点系モデルにより計算されたエネルギー伝達率は、衝突実験において求められたエネルギー伝達率と極めて良く一致することが確認された。

（3）山砂、川砂、砕砂および発泡スチロールに対する同定計算結果は、実験値をほぼ良くシミュレートしていることがわかった。

（4）12 ケースの実験データと同定計算結果を基に、山砂、川砂、砕砂に対する力学的パラメータの同型図を、W ≦ 3.0 t, H ≦ 20.0 m, h ≦ 1.2 m の範囲で導くことができた。

（5）各種の緩衝材における落石覆工へのエネルギー伝達率を計算すると、発泡スチロールは、山砂の約 1/10 程度で極めて優れた緩衝材であること、また砂の中では山砂が砕砂、川砂よりも優れたエネルギー吸収効果を示すことがわかった。

（6）RC製の落石覆工の方が鋼製のものよりもエネルギー伝達率が小さいことが認められた。これは、RC製の方が剛性が大きいため、反射されるエネルギー量も大きいためと考えられる。

（7）エネルギー基準による安全性照査の一例によっ
A STUDY ON ENERGY TRANSMISSION FACTOR OF ROCK ONTO ROCK-SHEDS
Yoshimi SONODA, Hiroshi SATOH, Nobutaka ISHIKAWA and Hiroshi MASUYA

This paper presents an estimation method for the energy transmission factor of a rock onto the rock-shed in order to perform the safety check for the collapse of a rock-shed from the viewpoint of energy criterion. The energy transmission factor means the ratio between the absorption energy of a rock-shed and the kinematic energy of a rock. At first, the three relationships of rock-sand cushion-rock shed are modelled into the three-degrees of freedom and, the transmission energy onto a rock-shed has been calculated as the time response. Herein, the model parameters of various sand cushion have been determined by the dynamic identification technique and derived as the regressive formulation which may be applied in various situations. Finally, the energy transmission factors of steel and RC rock-sheds have been estimated this method and, the safety check for the steel rock-shed has been performed by the energy criterion.