剛塑性極限解析および模型実験による
粒状体の力学的挙動に関する研究

山田 辰男1・田村 武2

1. はじめに

粒状体材料の挙動を評価するための方法は大別すると、連続体近似を導入するアプローチと離散体として直接解くアプローチに大別される。前者のアプローチでは、要素試験によって粒状体材料の巨視的な物性を評価し、構成式を通じて材料挙動の記述を行うものである。一方、後者のアプローチでは、個々の粒子について微視的な構造を考慮して、運動学的な制約、静力学的な制約のもとで個々の粒子の運動を求める。微視的な挙動から巨視的な挙動を追跡することを目的とし、粒状性を取り込んだ正確なモデルであるといえる。その代表的な手法として個別要素法が挙げられる。これまで、この手法を用いて種々の成果が得られていが、この手法の1つの問題点は、粒子間に設けられるばね等の物性の評価である。すなわち、この物性は粒子自体の物性から直接、得られたものではない。本研究で後者のアプローチに基づくものであるが、より単純な粒子間の相互作用のみを仮定する。すなわち、個々の粒子は剛体とし、粒子間の塑性挙動2)(3)(4)のみを仮定する。これにより非弾性挙動が卓越し、無限繊の強い地盤材料挙動の解明に重要な示唆を与えると考えられるからである。本研究ではまず、粒状体の塑性挙動を数値計算で再現するため、巨視的な挙動を支配する微視的な因子として、粒子間に作用する Mohr-Coulomb型の摩擦抵抗に着目した。この効果のみを取り込んだ剛塑性離散体モデルを用いて極限解析を行う。一方、2次元要素積層体を用いた模型実験をとおして、解析手法の信頼性について検証を行う。

2. 解析方法

(1) 解析モデル

従来の研究2)(3)(4)によれば、図-1のようなモデルに対しては数値解析によって実験を定性的に再現できることが分かっているが、極限荷重の計測はされていない。そこで本研究ではその定量的な再現を試みる。図-1のような細い載荷板では荷重計の設置位置による偏心が生じるため、本研究では制限の少ない図-2のような一点載荷荷重を用いる。以下では、円形要素集合体が鉄直に図-1と図-2のようにx軸からαの角度で規則的に配置され、部分的に固定壁に接している2種類のモデルについて考える。固定壁の形状により、前者を「L型モデル」、後者を「U型モデル」と呼ぶにし、これらのモデルにおいて次のように仮定する。

(a) 接触点には軸力と、摩擦によるせん断力が働く。

(b) 各要素は円形剛体であり、全体の運動は要素の「すべり」と「ころがり」のみに起因する。ただし、新たに接触点が生成・消滅しない範囲の変形を対象とする。図-1、図-2において載荷板を矢印の方向に速度vで準静的に変位させ、塑性破壊したときの極限荷重Pとその時の要素の速度場

Key Words:粒状体、機械的性質、極限解析、Mohr-Coulomb型摩擦法
（2）2要素の場合

図3のような等しい半径Rをもつ2つの円形断面要素がx軸から反時計方向にαの角度を接触しているとする。要素$i(i=1, 2)$はx, y方向の移動、回転の3つの自由度が存在する。要素の速度と反時計方向の角速度をそれぞれ$\dot{u}_i, \dot{v}_i, \dot{\theta}_i$とする。要素2は$x$軸に平行な載荷板により荷重$P$のもので一定変位速度$\delta(>0)$を受け、接触を保つために運動する。ここでつりあい式を考えるために4つの接触点における軸方向とせん断方向をそれぞれ$N_j, T_j(j=1, 2, 3, 4)$とする。ただし軸方向は圧縮を、せん断方向は時計方向を正とし、これらの力は以下の粘着力をもつ。「各接触点に作用する力」と言う意味で用いる。F_i, G_i, M_iをそれぞれ各要素に作用するx, y軸方向の物体力（自重）および反時計方向のトルクとする。

\begin{align}
0 & 0 -\sin \alpha & 0 & \cos \alpha & -1 \\
0 & \cos \alpha & 0 & \sin \alpha & 0 \\
R & R & R & 0 & 0 \\
0 & 0 & R & R & 0 \\
0 & 0 & 0 & 0 & 1
\end{align}

\begin{align}
F_2 & \\
G_2 & \\
M_1 & \\
M_2 & \\
P & \\
\end{align}

\begin{align}
N_3 \cos \alpha - T_3 \sin \alpha - N_4 &= F_2 \\
N_3 \sin \alpha + T_3 \cos \alpha - T_4 &= G_2
\end{align}

\begin{align}
R(T_1 + T_2 + T_3) &= M_1 \\
R(T_3 + T_4) &= M_2
\end{align}

\begin{align}
0 & 0 -\sin \alpha & 0 & \cos \alpha & -1 \\
0 & \cos \alpha & 0 & \sin \alpha & 0 \\
R & R & R & 0 & 0 \\
0 & 0 & R & R & 0 \\
0 & 0 & 0 & 0 & 1
\end{align}

\begin{align}
F_2 & \\
G_2 & \\
M_1 & \\
M_2 & \\
P & \\
\end{align}

\begin{align}
-u_2 \cos \alpha + \dot{v}_2 \sin \alpha &= 0 \\
-u_2 + \dot{\delta} &= 0
\end{align}

\begin{align}
\dot{S}_1 &= R\dot{\theta}_1 \\
\dot{S}_2 &= R\dot{\theta}_1 \\
\dot{S}_3 &= R(\dot{\theta}_1 + \dot{\theta}_2) - (\dot{u}_2 - \dot{u}_1) \sin \alpha + (\dot{v}_2 - \dot{v}_1) \cos \alpha \\
\dot{S}_4 &= R\dot{\theta}_2 - \dot{v}_2
\end{align}
式 (8)を満たす速度場を以下では「メカニズム」と呼ぶ。

(3) 仮想仕事の式と上界定理

式 (4)，式 (8)で得られたつり合い式，適合条件式は同じ行列 \(D \) を用いると

\[
\begin{pmatrix}
\dot{\boldsymbol{S}}_1 \\
\dot{\boldsymbol{S}}_2 \\
\dot{\boldsymbol{S}}_3 \\
\dot{\boldsymbol{S}}_4
\end{pmatrix} =
\begin{pmatrix}
0 & 0 & R & 0 & 0 \\
0 & 0 & R & 0 & 0 \\
-\sin \alpha & \cos \alpha & R & 0 & 0 \\
0 & -1 & 0 & R & 0 \\
\cos \alpha & \sin \alpha & 0 & 0 & 0 \\
-1 & 0 & 0 & 0 & 0
\end{pmatrix}
\begin{pmatrix}
\dot{u} \\
\dot{v} \\
\dot{\theta}_1 \\
\dot{\theta}_2 \\
\dot{\delta}
\end{pmatrix}
\]

(8)

と定義されるものである。つまり正のすべてが生じているときには，のせん断強度に等しい正（時計方向）の向きのせん断力を，負のすべてが生じていないときにはその間のある大きさのせん断力を表す。従って

\[
P\dot{\delta} + F_2 \dot{u}_2 + G_2 \dot{v}_2 + M_1 \dot{\theta}_1 + M_2 \dot{\theta}_2 = \sum_{j=1}^{4} T_j (\dot{\boldsymbol{S}}_j)
\]

(14)

と書くことが可能となる。こうして可容な速度場を1つ与えると式 (14)で \(P \)以外の値が決定され，したがって \(P \)の価が計算される。言い換えると，\(P \)は速度場 \(q \)の関数として求められることになる。上界定理が意味することは「任意に選んだ速度場 \(q \)の関数として決定された \(P \)は極限荷重 \(P^* \)の上界値である。この上界値を最小化することが先に設定した問題の正解値を得ることである」ということである。

(4) \(m \times n \) 要素の場合

ここでは図-1のように円形剛体要素が接触角 \(\alpha \)で規則的に \(m \times n \)の要素数で配置された場合を考えることにする。ただし規則性を明確にしておくため \(m \)は偶数としておく。各接触点 \(j \)におけるせん断力と軸力のベクトルをそれぞれ \(N_j, T_j \)とし，軸力は圧縮を正，せん断力は時計方向を正とする。\(F, M \)は各要素に作用する物理的ベクトルである。\(N \)は全接触点のうち載荷板の接触点を除いた接触点における軸力のベクトルであり，\(N' \)は要素と載荷板との接触点における軸力のベクトルを表す。ベクトル \(1 \)の次元は載荷板と接触する要素の数，従ってL型問題では \(y \)方向の要素数 \(n \)に等しいとする。
とつりあい式は
\[
\begin{pmatrix}
L^T & H^T & -D^T \\
W^T & 0 & 0 \\
0^T & 0 & 1^T \\
\end{pmatrix}
\begin{pmatrix}
T \\
N \\
N' \\
\end{pmatrix}
=
\begin{pmatrix}
F \\
M \\
P \\
\end{pmatrix}
\]
(17)
と表現できる。ただし
\[
T =
\begin{pmatrix}
T_1 \\
T_2 \\
T_3 \\
\vdots \\
\end{pmatrix},
F =
\begin{pmatrix}
F_1 \\
G_1 \\
F_2 \\
\vdots \\
\end{pmatrix},
M =
\begin{pmatrix}
M_1 \\
M_2 \\
M_3 \\
\vdots \\
\end{pmatrix},
1 =
\begin{pmatrix}
1 \\
1 \\
\vdots \\
1 \\
\end{pmatrix}
\]
(18)
である。次に全接触点のすべり速度、全要素の重心の速度、反時計回りの角速度で作られるベクトルをそれぞれ \(\dot{S}, \dot{u}, \dot{\theta} \) とし、以下のように置き換えると
\[
\dot{S} =
\begin{pmatrix}
\dot{S}_1 \\
\dot{S}_2 \\
\dot{S}_3 \\
\vdots \\
\end{pmatrix},
\dot{u} =
\begin{pmatrix}
\dot{u}_1 \\
\dot{u}_2 \\
\vdots \\
\end{pmatrix},
\dot{\theta} =
\begin{pmatrix}
\dot{\theta}_1 \\
\dot{\theta}_2 \\
\vdots \\
\end{pmatrix}
\]
(19)
適合条件式は以下のように変形できる。
\[
\begin{pmatrix}
\dot{S} \\
0 \\
0 \\
\end{pmatrix} =
\begin{pmatrix}
L & W & 0 \\
H & 0 & 0 \\
-D & 0 & 1 \\
\end{pmatrix}
\begin{pmatrix}
\dot{u} \\
\dot{\theta} \\
\delta \\
\end{pmatrix}
\]
(20)
式 (20) の適合条件式を満たす任意の速度場と、式 (17) のつりあい式を満たす任意の系に対して仮想仕事式
\[
P\delta + F^T \dot{u} + M^T \dot{\theta} = T^T \dot{S}
\]
(21)
が成り立ち、上界値 \(P \) の計算式が得られるので、2.2 で述べてきた 2 要素での問題は \(m \times n \) 要素での問題にも拡張される。こうして得られた上界値 \(P \) を線形計画法5)により最小化すると、求めるべき解が決定される。

(5) 要素の位置修正
本研究は剛塑性解析であるので、塑性崩壊する瞬間の要素の変位速度しか求められないので、従って崩壊直後の要素の位置は、一定と仮定する変位速度と適当な時間 \(\Delta t \) との積で求められる。こうして変位を決定した解析結果の図-4(a) よりと接触点 5 では要素と要素がわずかに離れているが、実際に実験をしてみると自重 \(G \) の作用で要素は接触したままだある。時間 \(\Delta t \) が微小なならばその間の変位量は線形近似できるが、有限変形では変位量は非線形となり線形近似は出来なくなる。ここでは経時的に解析と実験のメカニズムを比較するために \(\Delta t \) として小さな値を用いて計算を行い、変形量として線形近似を行う。以上の仮定の下、図-4(b) のように要素が接触するよう重力の影響を考慮し、再配置してから再度計算を行う作業を繰返し行う。

3. 実験方法及び結果
解析の妥当性を検証するために、真鍮製の棒状材料（直径 25mm、長さ 30mm）を用いた簡単な模型載荷実験を行った。実験装置の平面図を図-5 に示す。テフロン棒の側に要素間の接触角 \(\alpha = 45^\circ \) で規則的に接触するように配置を、背面のテフロン板を水平面と直角にして固定した状態でハンドルを回転し載荷板を移動させて載荷を行う。要素など回転の様子が分かるように線を引き、初期状態では「12時」の方向を向けてある。載荷板には荷重計と変位計を設置し、変位制御 (1.0mm/sec) ののもで行う。装置の右、下、左端の固定境界はアルミ製であるが、要素と固定境界の間に摩擦にそれほど差がなく要素の回転が不安定になるので、
固定境界にはピニュールテープを貼り要素間の摩擦よりも大きな摩擦を与え、要素の回転を安定させ実験の再現性を得た。絨（+x 軸方向）の要素数を m，横（-y 軸方向）の要素数を n，載荷板に接触する要素数を n' とし、以下では要素の配列の組合せを m-n-n' と表現することにする。2-2-1, 4-4-1, 6-6-1 の要素数のときの荷重～変位図を図 6～図 8 に示す。実験は 10 数回繰返し行い、その中で代表的な挙動を示す数ケースの荷重～変位関係を「experiment」に描いた。どのケースでもおよそ 0.5[mm] 付近で極限状態になり荷重のピークを示した後に、変位の増加に伴い荷重が減少し続け、要素配置の変化により巨視的な強度が軽度する傾向を示した。また、載荷板の変位量を 4.0[mm] としたメカニズムを図 9～図 11 に示す。図 9 では、変位・回転が見られるのは左端境界から 3 個の要素に限定され、下下端の要素は変位も回転していないことが分かる。載荷板直下の要素では、左側の壁面との接触点のせん断強度が他の 2 点の接触点よりも大きく、壁面で嘆きつつ回転するためすべりは生じない。さらに要素を増加させた図 10、図 11 において、白線で示した 45° のすべり線が形成されており、その白線の下端での要素の変位と回転は見られない。また、ピニュールテープを貼った壁面でのせん断強度が大きく、要素は壁面間ですべりを生じることはない。

4. 解析結果

(1) 内部摩擦角 \(\phi_p \) と \(\phi_w \) の決定法

田村らの研究で行われているように、2 要素を用いた 2 種類の実験を行い要素間の摩擦角 \(\phi_p \)、要素と壁面の摩擦角 \(\phi_w \) を測定した。図 12(a) のように 2 要素において、右側の載荷板を左方に押し出す受働状態を想定する。このとき要素 2 の水平方向の力のつもりあい式は以下のようである。

\[
N_4 = N_3 \cos \alpha + T_3 \sin \alpha \tag{22}
\]

ここに \(N_3, N_4, T_3, T_4 \) はそれぞれ接触点 3, 4 における荷重・せん断力を、\(\alpha \) は 2 要素の中心間を結ぶ線分が水平線となる角度を表している。\(\alpha \) が 30° から 80° まで変化させながら実験を行う。\(\alpha \) がある角度 \(\alpha_P \) より小さいときは接触点 3 がすべる。また \(\alpha \) がある角度 \(\alpha_P \) より大きいときは接触点 4 がすべる。従って \(\alpha = \alpha_P \) のときには 2 つの接触点が同時にすべっているので接触点の粘着力を無視すると

\[
T_3 = N_3 \tan \phi_p, \quad T_4 = N_4 \tan \phi_w \tag{23}
\]
図-9 実験によるメカニズム (2-2-1)

図-11 実験によるメカニズム (6-6-1)

図-10 実験によるメカニズム (4-4-1)

(24)

図-12 2要素の主働、受動状態

図-13 解析によるメカニズム (2-2-1)

(29)

(2) 解析と実験の比較

74
て描いた。図-6 や図-7 では荷重のピーク値を定量的に再現できているが、図-8 の場合、解析値は実験値の約 70% となっており、定量的な再現は出来ていない。また、いずれの場合も、変位の増加にともないステップ解析により得られた荷重が減少していく傾向を定性的に表現できている。

以下では図-8 の初期状態を破壊線で、破壊後のメカニズムを実線で示すことにして、ステップ時間 5 = 0.5 [sec] として 8 回算定して荷重の変位量を 4.0 [mm] としたものを示す。最も簡単な要素が 4 個の 2-2-1 の場合の解析メカニズムの図-13 では実験を定性的に再現できている。さらに要素を増加させた 4-4-1, 6-6-1 の場合のメカニズムを図-14, 図-15 に示す。これらのメカニズムでは、接触点の摩擦を受けながら求め合って回転する接点と、すべりを生じる接触点が混在する。また右下には、変位も回転もしない不動領域が見られ、それらの要素に沿って 45° のせん断帯が形成されている。6-6-1 では ψ 字型に変位の大きな領域が見られ、それ以外の要素では変位が少ない。4-4-1, 6-6-1 に関して、全接触点における軸力の平均値を超える接触点の軸力を、大小を矢印の長さに比例させて図-16, 図-17 に描き、平均値以下の接触点では図から省略した。荷重板直下 45° の方向に比較的大きな軸力が直線状に伝達される構造が見られる。最下層の要素で軸力が大きくなっているのは自重の影響である。また、塑性崩壊時の各要素の重心速度とすべりを生じた接触点におけるすべりの方向を記した塑性状態を図-18, 図-19 に示す。要素の重心速度の方向が一致、図-10～図-11 で見られるせん断帯で要素のすべりが確認できる。

また、実験値と解析値の差の要因としていくつか挙げられる。第 1 に、図-2 のように、要素の接触角を α = 45° で規則配置を厳密に形成することは非常に困難であり、実験による誤差を生じているということ。第 2 に、図-20(a) のように実験要素は全てで要素間は点接触を仮定しているが、ビニールテープを貼った壁面では図-20(b) のように接触点において面接触していると考えられる。ある接触面をもって接触する場合には転がり摩擦が生じ、転がりを止めようとする方向に転がり抵抗モーメントが作用し、その結果、転がりにくくなるために実験における荷重値が解析値よりも大きな値を得た要因の一つと考えられる。
5. まとめ

本研究では、粒状体の塑性挙動・力学特性を理解することを目的として、巨視的挙動を支配する微視的な因子として、要素間に Mohr-Coulomb 型の摩擦抵抗のみを仮定し、等半径の剛塑性粒状体モデルを用いて極限解析を行った。一方、2 次元棒状要素積層体を用いた模型実験を行い、解析手法の妥当性についても検証を行った。以下に本研究で得られた結論について述べる。

(a) 崩壊時の速度場にある時間をかけて求めた要素の位置を少し修正し、その位置から再度計算して近似的に変位量を求める。この操作を数回繰り返すステップ解析を用いることにより、要素の短時間的な挙動を短時間的に追跡することができる。

(b) 要素の規則配置下では、接触点の軸力を比較的大きく伝達する直線状経路が形成されて軸力集中を起こす。今後の課題としては、

(a) 粒径の異なる要素をランダムにパッキングさせて空隙を減らした配置での解析を行うことであり、軸力集中を緩和させること。

(b) せん断を受けた要素間接触点が消滅、新たに生成した場合に対応できるようにすること。といったことが挙げられる。

参考文献

(2002.9.9 受付)

RIGID PLASTIC ANALYSIS AND MODEL EXPERIMENT OF GRANULAR MATERIALS

Tatsuo YAMADA and Takeshi TAMURA

The mechanical behaviors of the two-dimensional uniform assembly of circular elements are studied by a simple model experiment and the rigid plastic limit analysis. In the experiment, the deformation patterns and the load-settlement curves of the partially-loaded ground are observed using the brass cylinders as the model of granular material while the frictional slippage and the rotation are assumed at the contact points of two elements in the rigid plastic numerical analysis. The comparison between the experiment and the analysis is quite interesting and discussed from a viewpoint of applied mechanics.