交通振動対策法「ハニカムWIB」の減振効果——高架橋基礎周辺配置ケース——

竹宮 宏和1・島袋単長2

1フェロー会員 岡山大学大学院教授 環境学研究科（〒700-8530岡山市津島中3-1-1）
E-mail: e_quakes@cc.okayama-u.ac.jp
2正会員 （株）構造計画研究所 防災・環境部（〒164-0011 東京都中野区中央4-5-3）
E-mail: shibamuku@kke.co.jp

本研究では、高架道路橋から発生する交通振動の沿線振動対策にハニカムWIBを導入することにより低周波地盤振動を大幅に低減できることをコンピュータ・シミュレーションから示したものである。まず走行車両により誘発される高架構造物の振動が、地盤では軟弱地盤構造や形式によって多岐波振動伝播となっているメカニズムを明らかにした。つぎに構造物・地盤系の動的相互作用解析をFEMモデルにより行った、沿線地盤振動の予測法を示すと共に、減振工法としてハニカムセルWIBと、連続地中壁を適用した場合との減振効果の比較を試み、卓越する地盤振動に対して前者が10dB以上の振動低減効果を発揮する優位性を示した。

Key Words: traffic induced vibrations, ground motion, low frequency transmission, viaduct, 3D-computer simulation, mitigation, honeycomb-WIB measure, comparison study

1. まえがき

高架橋からの道路交通振動が周辺地盤へ伝播し、沿線住家において振動が感じられ、振動障害を与えている事例が少ながらずある。交通振動が、特に低周波振動で発生するケースは、ほとんどの場合短期間地盤である。軟弱地盤上の上部構造物が挙ぐあるいはケーブ状に接された場合に基礎構造で支持されているのが一般的である。したがって交通振動には地盤と構造物の動的相互作用系としての振動性状が現れる。高架部の振動特性を変えることで構造物には減振効果が現れるが、これまで周辺地盤への低周波数成分の伝播は抑制しきれないのが実情である。

道路交通振動に対する対策工法として、従来から採用されているものには、舗装工（舗装・舗装工）、壁工法（コンクリート壁、矢板式、コンクリートとEPS組み合わせ）、柱列工法（コンクリート杭、PC杭）などがあるが、いずれも各種路線の波動インピーダンス比を利用して、入射波に対する反射波の比を小さくすることにある。しかし、現状では、これらの防振工は有限年の規模であり、波長の長い低周波では防振工の境界からの反射波があり、減振効果が理論どおりに得られにくい。それは実測から、また理論的に数値シミュレーションから明らかである。

振動対策において、従来の縦直方向での障壁方式とは異なる場合で、波動の伝播と非伝播現象に注目して竹宮はWIB工法（スラブ型WIB、柱列型WIB、ハニカムWIB）の防振工法を提案している。中でもハニカムWIBは、伝搬経路の水平方向のセル構造の変化を以って波動とインピーダンスの相互作用拘束を利用する。サイズ的には伝播波の波長を変調させるため、入射波に対しても波長を短縮するセル断面サイズとセル群の広がりを要求し、伝播波を高周波数化することで低周波成分が遮断されると共に、内部地盤の減衰効果が大きくなる。その結果、WIBゾーンを波動が通過する間に振動振幅が大幅に低減される。

本研究は、ある国道高架道路区間を対象に、ハニカムWIBによる減振効果をコンピュータ・シミュレーションから示したものである。まず交通振動の地盤内の伝播性状を波動論から把握した上で、ハニカムWIBの諸元を定め、その減振効果を定量的・定性的に評価した。その際、ハニカムセル壁と中に埋め材のジャックコンクリート比が一定の下で、形状効果を把握するために薄層要素法と有限要素法に基づく3次元解析を採用した。
2. 現地計測からの知見

調査対象とした高架道路橋は、図1に示すように、丘陵に挟まれた地形で、表1に示す軟弱地盤上に立地する3径間連続桁である。構造形式は、中間橋脚(3)が固定で他は可動支承となっている。交通車両により桁のたわみに伴う橋軸に沿った水平方向の移動に対して、P橋脚上の固定支承のみが拘束抵抗を示す設計になっている。そのため両端部においては、水平力と共に橋軸直角回りのロックリング変動を受ける。また当該高架橋は、曲線橋（曲率1/800m）であり、現時点では対面2車線の共用であるが、中間車道の背後の図5のため、桁部は橋軸直交断面内の逆進とロックリングの連成振動を示す。この高架橋の交通による振動特性に関しては、別論文1)で詳述した。高架道路の場合、車両走行によって発生する高架内の構造物と基礎の運動を介して地盤内に放射される地盤振動が関係している。

対象高架橋において、一般交通振動に起因して発生する沿線環境振動の実測、特に地盤内部振動伝播速度の把握のために、フィールド振動計測を行った結果を参照する。対象高架橋は、現時点で幅直たわみを制限する目的で、各スパンの中ほどで架設ベントによる支持（図1の平面図参照）を必要である。以下の計測結果は文献1)と同様な実施したものである。図1に示す計測点は、橋脚下方（6m）とそれよりの距離が6m、15m、35m、65mの地点である。それらは図1では、それぞれA、B、C、Dと記されている。振動計測には、携帯用振動計SPC-51（東京測振製）と速度センサーVSE-150を使用した。データ取得は、0.02秒ごとに60秒間の波形を20回の計測で行った。車両の走行速度を60～80 km/hとすると、当該3径間連続高架橋の桁上には平均車両数の載荷となる。各計測点の計測波形からの直交3成分速度応答の一例を図2に示す。これは計測点において応答が大きく現れる走行車線上の交通流に対する速度時刻歴応答である。20回の計測波形からの周波数成分を包絡線で描いたものを図3に示す。同図では、橋脚においては横軸に伴う橋軸方向成分の5Hzで卓越し、また橋軸直交方向と鉛直方向では3Hzと5Hzで卓越している。そして地盤振動には、橋脚から遅れるに従い橋軸に平行方向で3Hz振動が相対的に大きくなっていくことが分る。この原因に関しては次節で考察する。

橋脚下端と地盤上の計測速度の最大値に関して、各箇所の車両走行時の最大値を読み取り、それを平価して求めた距離減衰特性を図4に示す。橋脚下端（0m位置）の速度応答値は、橋軸方向と橋軸直角方向の水平応答が同程度であるが、橋脚が橋軸回りにロックリングしている事実より、橋脚の近傍地盤ではその影響が大きく橋軸直角方向応答が橋軸方向応答を上回っている。しかし橋脚からの距離が10m程度より離れると、橋軸方向応答が橋軸直角方向応答より大きくなる。したがって地盤内で発生する振動では、橋軸並行の面外波動成分が伝播波として卓越していることが分る。図5に橋軸直角方向への面内伝波波の水平と鉛直成分からの地表の軌跡を示す。0mの橋脚下端の動揺からは、鉛直成分と橋軸直交水平成分がほぼ比例関係にあり、橋脚が剛体として並進とロックリングを起している状況が推測できる。
3. コンピュータ・シミュレーション

(1) 地盤内波動伝播特性

対象地盤内に伝播する波動場を究明するため、地盤振動解析を薄層要素法を適用して行った。ここでは3次元波動場を対象にしており、橋軸直角方向に伝播する面内波と橋軸方向に伝播する面外波に注目する。伝播波の位相速度-周波数関係を実測値との比較で図-6に示す。同図には、図-2に示した計測点のうちの2地点間の計測波を用いてSASW（Spectral Analysis of Surface Waves）を適用した結果をシンボル（塗りつぶし無
し）で記入した。使用した２点間の距離によって波長が異なる波の伝播が捉えられている。ここで遠距離測定には別論文１１の加速度測定値からの結果（塩中にぶふリング）を併せて示した。波動の分散特性に関して，速度計測と加速度計測からの差は見られない。

伝播波の卓越周波数は，図－３の周波数応答から見て数Hzまでであり，図－６を参照して１次～２次モードからの寄与が大きいと判断される。周波数～波数の関係からは，波動の伝播域と非伝播域を明確に区分される。前者においては固有モード波が定義され，波動の分散性の特徴として周波数に対してそれらの異なる波長が決定される。3Hzの卓越周波数では，図－６の観測値からの結果では，面内波で平均170m/s程度，面外波で150m/s程度の波速が推定される。周波数ｆと波長λと伝播速度cの関係

\[ c = f \lambda \]  

（1）

に従って１次固有モード波の波長はそれぞれ60m程度，50m程度である。

地盤内への放射波の周波数は，図－３の0m位置（橋脚下端）の分布で代表される。そのとき波動の地盤内伝播は，位相速度よりもエネルギーの重心位置としての群速度

\[ c = \frac{\Delta f}{\Delta k} = \frac{\Delta f}{\Delta k} \]  

（2）

がより重要性を持つ。ここでΔf，Δkはそれぞれ周波数，波数の増分を表す。解析からの群速度～周波数関係を図－７に示す。これより群速度が最小となるエリア相が，面内波動では1次固有モード波，2次固有モード波において約4.6Hz，11.7Hzに確認できる。面外波動では1次固有モード波，2次固有モード波のエリア相が約2.9Hz，8.3Hzに確認できる。図－３のフーリエスペクトルで鉛直と横軸直角方向の水平振動で5Hzが，横軸方向の水平振動で3Hzが比較的共有に卓越したのは，それぞれの関係した波動で1次固有モード波のエリア相が原因したものと思われる。

固有振動モード形状を描いた図－８において，エリア相での波動振幅の深さ分布を示す。なお，振幅については，各モード波で地表面の鉛直成分を基準としている。表－１の地盤特性を参照して，支配的な波動モードである面内1次，面外1次の波動モードのいずれにも軟弱表層の約14mが関係していると言える。

（2）対象構造物－地盤系の動的性状

図－１の測線上の地盤振動には，別論文１１からもP4橋脚の振動が支配的に影響することが明白しているので，
図-9 橋脚-基礎系のモデル化

表-2 総変位全体 (mm)

<table>
<thead>
<tr>
<th>橋脚 (自重径)</th>
<th>橋脚 (括弧径)</th>
<th>権脚</th>
<th>総変位</th>
<th>質量</th>
<th>重量</th>
</tr>
</thead>
<tbody>
<tr>
<td>430.23</td>
<td>10.00</td>
<td>78.75</td>
<td>519</td>
<td>173</td>
<td></td>
</tr>
</tbody>
</table>

図-10, 図-11 は単位加振力に換算したときのケーニン基礎と地盤のインタフェースでの変位分布を示す。これらの図から、ケーン基礎はロックニングとスウェイの連成した応答が確認できる。加振周波数が低周波数帯域ではケーン底面近傍を中心としたロックニング振動が卓越し、3.15Hzにおいて最大応答を与えることが分かる。鉛直方向の変位分布からは、2m から 5m までの大きな応答となっている。数 Hz より高い周波数帯域では変形は極端に小さくなる。図-8 の地盤の固有モード形状を参照して、低周波帯域では基本固有モード波との共振状態あるいはそれに近い状態が発生していると言える。

(3) 減振工法ハニカメ WIB の導入効果

P4 橋脚の振動に起因する地盤振動に対して、ハニカム WIB で対応するときの減振効果を検証する。上の卓越周波数、卓越伝播波の種別、分布特性を有する波特性、構造物の固有振動特性および、ハニカム WIB の設計諸元を表-5 及び図-12 に示した。以下のコンピュータ・シミュレーションでは、ハニカム WIB の地盤改良基はシェル要素、ハニカム WIB 内の地盤はサンド要素でモデル化した。ハニカムセルの設計昭元決定では、主要な周波数 5Hz に対応した伝播波型の波長 l が約 30m であることを考慮、セル断面の代表寸法 d を規準式 (1/10) l の下限に近い 3.5m とする。構成要素である地盤改良杭の径は 0.8m、深さ H は卓越波型の深方向の振幅から 13.6m、ハニカム WIB の水平方向の周波数 W の規準式 (1/10) l の下限に従って、基礎端から水平方向に 3 倍で W=8m程度になるようにした。また、水平方向の平均応力の影響を下げため、4 レートのハニカム WIB (11m の水平周波数) の解析を行った。基本動力とハニカム WIB は直に接合させず、縫を切っている構造である（図-12(b)）。加振周波数については、最も重要な周波数の 2.5、3.15、5Hz の加振時を対象に減振効果を検査し、まず、ハニカム WIB を導入した場合のケーン基礎と周辺の地盤の相互作用効果の変化を見ること、桁脚と橋脚天端（橋脚直角方向に関）の周波数応答を桁脚に直交する横断面内で調べ、図-13 に示した。その結果、ハニカム WIB は、基礎の卓越周波数を 3Hz 付近から 4Hz 付近へと変える同時に、桁脚では応答が多少大きくなるものの基礎天端の応答を非常に大きく低減している。このことは橋脚のフライドとロックニングの連成振動が基礎において大幅にハニカム WIB により拘束されることが示している。この結果は基礎からの放出される振動エネルギーの低下を示唆している。
図-10 単位加振力に対する傾斜方向変位の変位分布

図-11 単位加振力に対する傾斜方向変位の変位分布

表-5 ハニカムWIBの地盤改良杭の物性値

<table>
<thead>
<tr>
<th>直径</th>
<th>長さ</th>
<th>密度</th>
<th>せん断速度</th>
<th>ポアソン比</th>
<th>減衰率</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ (mm)</td>
<td>L (m)</td>
<td>g/cm³</td>
<td>Vₛ (m/s)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>800</td>
<td>13.5</td>
<td>2.00</td>
<td>1000</td>
<td>0.4</td>
<td>0.02</td>
</tr>
</tbody>
</table>

振動の低減率の評価に、本研究ではJIS基準の振動加速度レベル値を採用する。

\[ VAL = 20 \log_{10} \left( \frac{a}{a_0} \right) \]  
(3)

ただし、実効値 \( a_p = \sqrt{1/2} a_s \)、\( a_p \) はピーク値、
\( a_0 = 10^{-2} \text{[m/s²]} \) は基準値である。

調和加振力に偏心鉛直方向（\( P \)）と水平橋軸方向（\( P \)）を単独にとった時の基盤周辺の振動加速度レベル値を20 mメッシュのコンター図で水平橋軸方向成分と橋軸直角方向成分、鉛直方向成分に分けて、それぞれ図-14 (a)，図-15 (a)，図-16 (a) に示している。偏心鉛直加振下の橋軸直角方向の応答成分は、橋脚のスウェイとロッキング連成振動のため3.15 Hz 加振力が大きい、波動伝播特性からも地盤内の面内波（レーリ波）として伝播する様相が見られる。鉛直応答は、5 Hz において振動レベル値が大きい。水平加振下の橋軸方向水平応答は、面外
波動（ラブ波）として遠方へまで伝播する様相が顕著に見られ、3.15 Hz 加振時が最も振動レベルが大きい。

ハニカム WIB を考慮した場合の加速度振動レベルのコンター図を図-14(b), 図-15(b), 図-16(b)に掲げた。対策前後の応答と比較して、ハニカム WIB の波動遮断効果が発揮されており、対象とした低周波帯域の加速度応答において激減していることが見られる。

ハニカム WIB の対策前後で最大応答値の変化を距離減衰曲線で示すと図-17～図-19 が得られる。ここでは、主な周波数に限って、ハニカム WIB を 3 列とした場合と 4 列とした場合の応答低減効果を検討している。ハニカムセルの 3 列と 4 列の差は僅かであるが、この理由については平行な WIB セルの場合の別論文において波動伝播媒体のインピーダンス比から説明したが、今回の基礎近傍 WIB に関しても同様なことが当てはまる。そして水平加振に対する水平応答で 10 dB 以上の低減効果が得られている。それはハニカム WIB の設置位置から見られた、つまり基礎からの振動の放出はハニカムセルのゾーンで波動エネルギーがトウブされ、そして消失されて、結果として応答レベルが低減されるのである。

ところで当該高架橋は曲線桁であるため、走行車両からの横方向への慣性力が働く。これに応じて Loading
から得た値を用い、これに鉛直荷重 P_c から
取って

\[ P_c = \frac{P_c}{(gR)} \] (4)

と評価する。ここに c は車両の走行速度、g は重力加速度、R は桁の曲率半径である。走行速度に 60 〜 80 km/h を想定すると、水平力は鉛直力の数％程度をとることになる。これに対する基礎地盤系の応答は、概略的に \( P_c \) の加振状態の結果を反時計回りに 90 度回転して上の推定値を評価すればよい。地盤への加振力には橋梁構造の慣性力の発生が加算されることになる。そのため橋脚方向を上回る基礎からの地盤への入力となることは、実測に基づく別論 

(4) 仮定工法との比較

ハニカム WIB の減振効果の有効性を従来工法との比較で示すために、連続地中壁工法との比較をした。波動遮断壁の深さ決定に適用される理論によれば、振動を半減させるため、通常、対象波長の少くとも 1/3 をとる必要がある 10。現地計測からの代表波長を対象とするとき、それは 10 数 m となる。図-20 に厚さ 1 m、全幅
図－15 偏心鉛直加振（P：20t）による地表面鉛直方向応答（振動レベル（dB）のスケールは全て同一）

図－16 横軸方向の水平加振（P：20t）による地表面横軸方向水平応答（振動レベル（dB）のスケールは全て同一）
20 m の鉄筋コンクリート連続地中壁の解析モデルを想定した。深さはハニカム WIB の場合と同一で、地盤の支持層上部までの 13.6 m とした。調和加振法は図に示すように水平方向 (p=201) を仮定した。

まず、連続地中壁の振動伝播バリアーとしての効果を調べるために、図-21 に示すケーロン及び連続地中壁位置での深さ方向について、連続地中壁導入前後の橋軸方向の変位を比較した。その結果、連続地中壁の剛性により局所的にその直背面の応答が図-22 に示すように数 dB 程度低減しているが、しがそれ以上の地方での応答の回復が早く、20 m 地点では僅かの低減し
４．むすび

交通振動における低周波帯域をターゲットにした振動対策法のハニカムWIBの例示として、本論文では根入れ基礎を持つ道路高架橋を対象にコンピュータシミュレーションを行った。それから得られた知見は、

（１）高架道路橋からの交通振動問題では、高架内の振動発生と地盤内の伝播特性、基礎と地盤の動的相互作用が関係する。沿線地盤の実測調査からは、ピーク周波数が3～5Hzである。それには当該サイトの波動伝播特性が原因していることを指摘した。

（２）高架道路振動では、高架構造形式の固有振動が反映され明瞭な特定の卓越周波数を呈する。これへの振動対策シミュレーションとして、本研究では定常調和波動状態から対応した。その結果、ハニカムWIBは基礎の卓越周波数を３Hz付近から４Hz付近へ高めると同時に、振幅で応答が多少大きくなるものの基礎天端の応答を非常に大きく低減していることが分かった。

（３）現地の振動計測に基づいて、交通による高架道路から沿線への振動の伝播特性を把握し、それに基づいた有効なハニカムセルのサイズとアーカジを決定した。

（４）対策工法ハニカムWIBの効果が卓越する低周波帯域で重要な振動伝播に対して10dB以上あることを示し、従来工法の連壁との比較で前者が非常に優れていることを確認した。

謝辞：交通振動のフィールド計測実施では、岡山大学環境理工学部デザイン工学科環境防災研究室の学生皆さんのご協力を得たことを、ここに感謝する。

参考文献
1) 竹宮宏和, 井下啓子, Feng CHEN: 高架道路橋からの交通振動発生と沿線地盤への伝播特性 -FEM解析による予測と対策, 土木学会論文集, 2006（投稿中）
2) 地盤環境振動の予測と対策の新技術に関する研究委員会報告, 第２編対策事例, 地盤環境振動の予測と対策の新技術に関するシンポジウム, 地盤工学会, pp.87-116, 2004年5月
3) 芦谷公雄, 西村光信: 振動遮断工の防振効果に関する3次元解析, 地盤環境振動の評価・予測・対策に関するシンポジウム, 地盤工学会, pp.85-90, 2001年2月
5) 竹宮宏和, 合田和哉, 佐藤延雅: 振動遮断ブロック(WIB)の受動的制振効果, 土木学会論文集, No.540-37, pp.221-230, 1996.10
6) 竹宮宏和, 前田隆太, 豊間基成: 高速列車による軌道・地盤系の2.5D FEMによる振動予測と制振法の検討, 土木学会論文集, No.710-1-60, pp.247-255, 2002年7月
8) 竹宮宏和, 島袋組, 井下啓子: 高架道路橋からの振動問題への対策工法ハニカムWIB, 地盤環境振動の予測と対策の新技術に関するシンポジウム, 地盤工学会, pp.173-178, 2004年5月
10) Skopec, K.H., Wright, G.W., James, A.B. and Jose, M.R.: Characterization of geotechnical sites by SASW method, ISSMFE, TC010, pp.15-25, 1994
12) SuperFLUSH3Dマニュアル, 構造計画研究所
13) 竹宮宏和: 特許申請中, 2004
14) 江島純: 高架道路と対策, 第8章, 吉井書店, 1982

HONEYCOMB-WIB FOR MITIGATION OF TRAFFIC-INDUCED GROUND VIBRATIONS WHEN CONSTRUCTED AROUND VIADUCT FOUNDATION

Hirokazu TAKEMIYA and Jorge SHIMABUKU

The authors investigated that a honeycomb-WIB (Wave Impeding Barrier of honeycomb celles) works for vibration mitigation for the traffic induced vibrations from viaduct when constructed to surround the foundation, especially in the low frequency range. The thin layered method is taken to analyze the involved wave field to determine the size of the WIB cells and their area for construction. The interaction of structure-foundation-soil is analyzed by the 3D substructure method to show the WIB effect for the ground response reduction. The comparison with the buried wall for an alternative measure demonstrate the superiority of the honeycomb-WIB, claiming the reduction more than several dB at the low frequencies.