パラオ諸島における分布予測モデルを用いた
マングローブ生育地の脆弱度評価

竹村 紫苑1・赤松 良久2・篠田 磨人3

1徳島大学大学院先端技術科学教育部（〒770-8506 徳島市南常三島2-1）
2山口大学大学院理工学研究科（〒755-0003 山口県宇部市常磐台2-16-1）
3徳島大学大学院ソシオテクノサイエンス研究部（〒770-8506 徳島市南常三島2-1）

E-mail: shiontakemura@gmail.com

パラオ諸島におけるマングローブの生育地としての干潟の形成と安定性に関わる流域特性を用いて潜在的生育地を推定し、広域的視点から生育地の脆弱度評価を行なった。流域特性として土砂供給、土砂堆積、そして波の静寂性に関する要因をGISを用いて算出した。そして一般化線形モデルを用いて流域内に生じ可能なマングローブ生育地面積の推定を行なった。その結果、流域山地部からの土砂供給量が大きく、平野部の土砂堆積量が少なめ、かつ平野部の水理条件の良い河川が大きな内湾に流入する場所において潜在的生育地面積が大きく、マングローブの潜在的生育地は限られた場所であり、パラオのマングループ生育地のほとんどは脆弱な環境に立地することから、土地開発は慎重に検討する必要がある。

Key Words : mangrove, predictive habitat distribution model, vulnerability, gis, palau

1. はじめに

マングローブ林は沿岸部・河口部の安定性を維持するとともに、魚類、甲殻類、貝類をはじめとする生物の生息地として生物多様性を維持する役割を担っている9。また、マングローブ林周辺に暮らす人々はマングロープ生態系から供給されるサービスを利用して生活してきた9。しかし、近年、無秩序な農地、水産養殖地、観光用地、市街地への転換によってマングロープの破壊が引き起こされている9。1980年から2000年の間に世界の約35%のマングロープが失われ、マングロープ林の消滅スピードは内陸の熱帯林やサングロ礁よりも早い速度である9。以上のことから、マングロープ林の保全・管理に向けて生育地の現状評価が急務となっている。

太平洋上のミクロネシア地域の島々からなるパラオ諸島（以下、パラオ）では、沿岸域全般に広大なマングローブ林が分布している。しかしながら、パラオ諸島は火山活動によってサンゴ礁が隆起して形成された島であるために標高が低く、かつ石灰岩からなる地質によって構成されることから水はけが良く、マングロープにとって水ストレスが非常に高い場所でもある。その一方で、パラオの主要な産業は観光業であり、観光業の振興を目的とした土地開発が今後行われることが予測される。流域内における土地開発は水理環境を改変し、マングロープ生育地における塩分条件を変化させる可能性がある。塩分濃度の上昇はマングロープの実生や若木の生成の低下、種子生産などの再生産能力の低下を引き起こすことが報告されており6，無秩序な土地開発による水理環境の変化はマングロープ林の更新を阻害し、生育地の質の劣化を引き起こすことが懸念される。マングロープ生育地への影響を最小限にするためには、広域的な視点から土地開発の影響を及びやすい脆弱な環境に分布するマングロープ生育地を明らかにする必要がある。

そこで本研究では、マングロープを重要な観光資源と位置づけ、観光産業を軸として経済発展を図ろうとしているパラオ共和国を対象として、マングロープ林の生育地である干潟の形成と安定性に関わる、流域の山地部からの土砂供給、流域の平野部における土砂堆積。そして河口域における波の静寂性などの流域特性を用いてマングロープの生育環境を決定する要因を明らかにした。そして、パラオにおけるマングロープの潜在的生育地を地図化し、潜在的生育地マップに基づいて、パラオに分
布するマングローブ生息地の脆弱度評価を行なった。

2. 解析方法

(1) 解析対象地

本研究ではパラオ共和国を研究対象地とする（図-1）。パラオの主要産業はサンゴ礁やマングローブ林等の豊かな生態系を観光資源とした観光業であり、パラオを訪れ観光客は増加傾向にある（図-2）。

(2) 潜在的生育地推定モデルの構築

a) 土砂供給・土砂堆積に関わる要因

本研究で用いた説明変数を表-1に示す。解析は水系ごとの流域単位で解析を行い、水系ごとの流域界はUSGSが提供する流域界データ、DEMから作成した水系ネットワーク図を用いて水系単位に再結合して作成した。本研究では、傾斜角が10度以上になると土砂供給が起こりやすいことが経験的に明らかとなっているため、そして山地部であるにも関わらず傾斜が緩い尾根を除外するために、流域内の傾斜角が10度以上かつ標高8m以上のエリアを土砂供給が発生する山地部、それ以外を平野部と定義した（図-3A）。

流域面積に戸部面積を算出し、土砂供給量を算出、次に、山地部におけるStream Power Index（以下SPI）の平均値（mt_spi）、平野部におけるTopographical Wetness Index（以下TWI）の平均値（pl_twi）をそれぞれ算出した（図-3B、C）。SPIは水の流れやすさを示し、土砂の侵食の起こりやすさをあらわす一方、TWIは地下水の溜まりやすさを示し、マングローブの生育に適した水環境の良い場所であることをあらわす。SPIとTWIは以下の式(1)(2)によって算出される。

\[
SPI = \log(A_H \times \tan \alpha)
\]

\[
TWI = \log(A_H / \tan \alpha)
\]

ここで、A_Hは対象セルに流入する集水域面積をあらわし、\(\alpha \)は対象セルにおける傾斜角をあらわす。

b) 波の静寂性に関わる要因

波の静寂性をあらわす指標として湾ユニットを用いた。湾ユニット抽出の定義はArakida et al., (2011)に従い、湾面積の大きさは海岸線形状の複雑性を示している。湾面積が大きいほど外洋からの波浪の影響が小さく、干渉の形成に適した環境であることを示している。この方法ではバッファ距離を変えることで、様々なスケールの湾口幅を持つ湾ユニットの自動抽出が可能である。本研究では、USGSが提供する海岸線データを用いて、500m、1km、そして3kmスケールにおけるオープンホール・タイプの湾面積（BO500、BO1000、BO3000）を算出した（図-3D）。なお、河川の流出点が接する各バッファごとの湾面積をその流域における湾面積として与えた。

<table>
<thead>
<tr>
<th>説明変数</th>
<th>略字</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 土砂供給・土砂堆積に関わる要因</td>
<td></td>
</tr>
<tr>
<td>流域面積</td>
<td>(m²)</td>
</tr>
<tr>
<td>山地部面積</td>
<td>(m²)</td>
</tr>
<tr>
<td>山地部平均SPI</td>
<td></td>
</tr>
<tr>
<td>平野部面積</td>
<td>(m²)</td>
</tr>
<tr>
<td>平野部平均TWI</td>
<td></td>
</tr>
<tr>
<td>2. 波の静寂性に関わる要因</td>
<td></td>
</tr>
<tr>
<td>湾面積 500m</td>
<td>(m²)</td>
</tr>
<tr>
<td>湾面積 1km</td>
<td>(m²)</td>
</tr>
<tr>
<td>湾面積 3km</td>
<td>(m²)</td>
</tr>
</tbody>
</table>
c) 目的変数

USGSが提供する植生図のポリゴンデータからマングローブ分布域ポリゴンを抽出した（図1）。（2)(a)で作成した水系データとマングローブ分布域ポリゴンとのオーバーレイ解析によって、各流域内に分布するマングローブ生地の総面積（㎡）を算出し、目的変数とした。

d) 統計解析

流域内に生育可能なマングローブ生育面積yの推定は、誤差分布を正規分布とした一般化線形モデル（Generalized Liner Model）を用いて行った（式(3)）。

\[y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_n X_n \]
(3)

ここで、Xは説明変数、\(\beta \)は定数、\(\beta \)はXの回帰係数を表す。流域内のマングローブ生育面積（MA）を目的変数、9つの環境要因（wsa, mt_area, mt_spi, pl_area, pl_twi, BO500, BO1000, BO3000）を説明変数とした。変数選択は赤池情報量規準（Akaike’s Information Criterion; AIC）を基準として総当たり法により行い、最もAICが低かった変数の組み合わせをベストモデルとして採用した。なお、マングローブ生育面積、流域面積、山地部面積、平野部面積、面積についてはばらつきを考慮して平方根換
算による標準化した値を用いた。また、多重共線性の影響を考慮して説明変数間の相関係数の絶対値が0.6以上となる組み合わせは同時に投入しなかった（表-2）。最後に、流域内のマンクログーブ分布域ポリゴンの面積と予測モデルによって得られた推定面積との関係から決定係数 R^2を算出し、モデルの精度検証を行なった。

(3) 潜在的生育地推定モデルと用いた生育地評価
得られたモデルを用いてパラオにおけるマンクログーブの潜在的生育地マップを作成し、実際のマンクログーブ分布と予測モデルから推定された予測値との違いを、予測モデルで選択された説明変数に基づいて検討した。

3. 結果及び考察

(1) 最適モデルの選択
総当たり法の結果より、AICの値が小さい変数の組み合わせ上位10モデルを表-3に示す。表-3より、AICの値が最小のトップモデルで説明変数として選択されている山地部SPI、平野部面積、平野部TWI、そして1kmスケールの河面積は、上位10モデルにおいて9回以上選択されており、一方、トップモデルでは選択されなかった流域面積、山地部面積、そして500mスケールと3kmスケールの河面積は、4回未満しか選択されていないかった。以上の結果から、本研究ではトップモデルをベストモデルとして採用し、得られたベストモデルを式(4)で示す。

\[MA = -257.72 + 52.53 \times mt_spi + 0.63 \times pl_area + 33.80 \times pl_twi + 0.015 \times BO1000 \] (4)

これらの結果から、本モデルは山地部からの土砂供給量が多く、平野部における土砂堆積容量が十分で、かつ地下水が溜まりやすい水環境に優れた平野部地形である河川が、大きな内湾に流入している場所において、マンクログーブの潜在的生育地面積が大きいことを示している。

（2）潜在的生育地予測モデルに基づく生育地評価
図-5より、大きな湾の内陸部に位置する流域においてマンクログーブの潜在的生育地の面積が大きかった。この結果は、パラオでは大きな湾の内陸部でほぼ内湾性が確認され、かつ流域面積の大きな河川が流入しているために、
4. おわりに

本研究では、マンゴープの生育地である干潟の形成と安定性に関わる流域特性に着目し、十分な精度を持つマンゴープの潜在的生育地推定モデルを構築した。また、生育地予測モデルを用いた生態地域の適度評価によって、パラオではマンゴープの潜在的生育地の限られた場所である、多くの生態地域に適していない脆弱な生態地域に立地していることが明らかとなった。また、Karamadoo湾に立地する生態地域は、マンゴープの生育地に近い場所であり、特に内湾性が高いため、特に生態地域で十分な生育地が見つかっていることから、パラオ全体でのマンゴープの生育地が限られた場所であることも示唆される。

潜在的な生育地予測モデルの結果、Karamadoo湾に立地する生態地域は、推定された潜在的生育地面積が実際にマンゴープの分布が見られた場所を示している。マンゴープは潮汐によって種子が散布され、その散布距離は非常に長く、島嶼部での遺伝子流動が確認されているが、すなわち、内湾性が高いKaramadoo湾に分布するそれぞれのマンゴープの生育地は、湾内に立地する他の生育地から散布された種子によって維持されることで、湾全体のマンゴープ分布が維持されているものと考えられる。この構造はメタ個体群構造を示すと考えられる。湾内に分布するマンゴープの生育地の面積（メタ個体群）が十分に大きくなければ、湾内の一部の生態地域が自然破壊等によって破壊されて他の生態地域から個体群が供給されて新たな生育地が形成できる。しかしながら、灣内に立地する生態地域の一つであり、他の生態地域から個体群が供給されて新たな生
Evaluation of vulnerability of mangrove habitats using predictive habitat distribution model in Palau Islands

Shion TAKEMURA¹, Yoshihisa AKAMATSU² and Mahito KAMADA³

¹ Graduate School of Advanced Technology and Science, the University of Tokushima
² Graduate School of Science and Engineering, Yamaguchi University
³ Institute of Technology and Science, the University of Tokushima

Palau Islands have rich mangrove forests, and the government plans to use them as resource of ecotourism for economic development. A method for estimating potential habitat was developed using ecological niche model at Palau Islands, in order to provide basic information for sustainable planning. Setting the area of mangrove forest in each watershed as response viable, and using Watershed area, Mountain area, Plain area, mean SPI (Stream Power Index) at mountain area, mean TWI (Topographic Wetness Index) at plain area and Bay units as explanatory variables, generalized liners model was developed.

Mean SPI at mountain area, Plain area, mean TWI at plain area and bay unit were selected as responsible environmental factors in the model. The result shows that extent of mangrove habitat is corresponded with an amount of sediment production in mountain area, capacity of sedimentation in plain area, and bay shape. Almost watersheds in Palau Islands have little potential for forming adequate habitat, and thus almost mangrove forests seem vulnerable against land alteration. Careful planning for land development is essential for the sustainable development.

Evaluation of vulnerability of mangrove habitats using predictive habitat distribution model in Palau Islands

Shion TAKEMURA¹, Yoshihisa AKAMATSU² and Mahito KAMADA³

¹ Graduate School of Advanced Technology and Science, the University of Tokushima
² Graduate School of Science and Engineering, Yamaguchi University
³ Institute of Technology and Science, the University of Tokushima

Palau Islands have rich mangrove forests, and the government plans to use them as resource of ecotourism for economic development. A method for estimating potential habitat was developed using ecological niche model at Palau Islands, in order to provide basic information for sustainable planning. Setting the area of mangrove forest in each watershed as response viable, and using Watershed area, Mountain area, Plain area, mean SPI (Stream Power Index) at mountain area, mean TWI (Topographic Wetness Index) at plain area and Bay units as explanatory variables, generalized liners model was developed.

Mean SPI at mountain area, Plain area, mean TWI at plain area and bay unit were selected as responsible environmental factors in the model. The result shows that extent of mangrove habitat is corresponded with an amount of sediment production in mountain area, capacity of sedimentation in plain area, and bay shape. Almost watersheds in Palau Islands have little potential for forming adequate habitat, and thus almost mangrove forests seem vulnerable against land alteration. Careful planning for land development is essential for the sustainable development.