気象条件による主要穀物収量関数の推定

杉本 賢二1*・松村寛一郎2

1名古屋大学大学院環境学研究科。（〒464-8601 名古屋市千種区不老町D2-1）
2関西学院大学総合政策学部。（〒669-1337 兵庫県三田市学園2丁目1番地）

* E-mail: k.sugimoto@urban.env.nagoya-u.ac.jp

研究では、気象条件の変化が穀物生産に与える影響を推計することを目的として、とうもろこし、米、小麦の3品目を対象に、単位収量を代替情報を考慮した気象条件による関数として推定を行った。その結果、栽培期間における積算降水量と平均気温にかかる係数が負と推定されたことから、極端気象の発生により生産量が減少していることが示された。また、推定されたパラメータを用いて気象条件が穀物生産に与える影響を推計したところ、栽培期間における積算降水が1%増加した場合には、とうもろこし、米、小麦の生産量はそれぞれ、0.15%、0.07%、-0.32%変化すると推計された。一方で、積算平均気温が1%増加した場合には生産量がそれぞれ、3.78%、5.70%、1.36%減少すると推計されたことから、特に、人口が多いアジア地域で主食である穀が気候変動に伴い生産量が減少することが明らかとなった。

Key Words: major crop, yield function, weather conditions, spatial data, climate change

1. 研究の背景と目的

近年、穀物の国際価格が過去の高値と比較して高い水準で推移しており、2012年8月には、とうもろこしの国際価格が史上最高となる37.2ドル/トんを記録した1。こうした価格高騰の背景には、時短的に生産期に8か月から9か月かけて、アメリカ穀倉地帯で高温状態が続いたことにより生育が阻害されたことが影響しているが2。長期的には発展途上国を中心とした人口増加と経済成長に加え、先進諸国における穀物を原料としたバイオ燃料政策の推進により、今後も需要の継続的な増加が見込まれる恐れから、投機市場としての期待感が高まっていることにその一因である2。また、一般的に食料は自国において自給される性格が強く、特に穀物は他の貿易財と比較して生産量に占める輸出量の割合が小さくなっているため、輸出国の生産量が変動すると市場価格に大きな影響を与える構造となっている2。

加えて、今後の地球温暖化の進行により高温や少雨、洪水といった極端気象の発生回数が増加するだけではなく、その強度も増すと予測されている3）。したがって、気象条件が変化することにより穀物生産がさらに変動すると考えられ、近年観られた価格変動が起こりやすくなる。こうした気候変動に伴う穀物生産の変化を把握することは、輸入依存度の高い日本だけでなく、購買力の低い発展途上国においても食糧安全保障を考える上で重要である。

こうした背景から、Tan and Shibasaki (2003)7、Masutomi et al. (2009)8、Tatsumi et al. (2011)9などにより、気候変動が穀物生産に与える影響が明らかにされてきた。これらの研究では、気候モデルによる将来の気象条件をプロセスモデルに入力することにより収量変動を算出しているが、穀物モデルは圃場や試験場など、観測データが十分に得られる小さいスケールを想定して開発されているために10、11、世界全体で適用する際には多くの入力データを収集し、モデルパラメータや構造を地域ごとに調整する必要がある12、13。さらに、穀物モデルは生育に関する気象条件要因による影響を踏まえて複雑な生物・物理プロセスを表現することが可能であるが、要因変化が生産に与える影響が直感的にわからない構造になっている。

ことにより，収量と気象条件との関係性を計量的に捉える試みがなされている。この手法では，穀物モデルのように，正確に生育期間の生長プロセスを表現できるわけではないが，国ごとの地域特性がパラメータによって推定可能である。特に，最近になって降水量や気温などの気象条件や，リモートセンシング技術を活用した栽培地や耕地分布に関する空間データが整備されてきており，これまで国スケールでしか行えなかった帰帰分析が，空間分布を考慮したものとして行われることがになっている。

このような空間データの整備と蓄積は農業部門だけでなく，水文学や気象防戦においても同様であり，時間や日単位での高い時間分解能を持つ気象データセットが利用可能である。前述の既存研究では月別に平均化された気象データを用いていたため，高値や変動による短い期間での異常気象は全体化され，その影響について十分に考慮されていない。一方で，Thompson (1986)17)のように，州などの地域レベルで日別気象データを用いた研究もあるが，世界全体を対象としたものはこれまでに行われていない。

以上より，本研究では，主要穀物であるとうもこ，米，小麦を対象として，統計値と気象条件との統合により収量関数の推定を行う。その際に，日別気象データを用いることにより，気象要因が収量に与える影響を推計するだけでなく，従来の研究では加味されていない極端事象についても考慮する。また，推定されたパラメータを用いて，気象条件の変動が穀物生産に与える影響について推計する。

2. 収量関数の推定方法

(1) 収量関数式

本節では穀物の収量関数の推定方法について説明する。本研究では，主要穀物であるとうもこ，米，小麦の3品目を対象として，統計18)による単位面積当たりの収量（以下，単位収量）を，栽培期間における降水量と気温による気象条件による関数として推定を行う。図1に推定方法のフローについて示す。

とうもこは，米，小麦の3品目について，n=国の単位収量（kg/ha）を，

\[\log(Y_i) = a + b_1 \log(P_i) + b_2 \log(P_i^2) + b_3 \log(T_i) + b_4 \log(T_i^2) \]

(1)

として関数化を行う。ここで，P: 作付日から収穫日までの栽培期間における日別降水量の合計，P_i:

日別降水量の二乗和，T: 日別平均気温の合計，T_i:

日別平均気温の二乗和，であり，a: 定数項，b_1 ～b_4: 係数，をそれぞれ表している。式(1)において降水量と平均気温の二乗和を用いることにより，高温や変雨などの極端な気象が起きた際の，気象要因と穀物収量に与える感度について推定可能な構造となっている。また，式(1)により推定されるパラメータは，それにかかる変数が変化した際に，収量が変化した割合である弾性値と同値となることから，両対数による回帰式を用いる。

(2) 推定に用いたデータ

収量関数の推定に用いた気象条件について，以下の方法により算出した。まず，Hirabayashi et al. (2008)19)による0.5度グリッド（約50km）ごとの日別気象データ（降水量，最高気温，最低気温）を，Sacks et al. (2010)20)による栽培地を用いて，作付日から収穫日までの気象条件を計算する。なお，推定で用いる平均気温は最高気温と最低気温の平均として算出した。

次に，Monfreda et al. (2008)21)による0.5度グリッドごとの耕地面積割合を，それを国ごとに合計した国別総耕地面積割合との割合により重み付けした後，国別に集計した。これにより，気象条件が国ごとに合計された形となり，グリッドの耕地面積割合に合わせた。また，実際には耕地の拡大や転作などがなされているが，現在のところ耕地面積に関する時系列空間データがないため，推定期間においてグリッドごとの耕地面積は一定であると仮定している。

推定期間は統計値とHirabayashi et al. (2008)の気象条件が揃っている，1961から2006年までとした。そのため，旧ソ連や東欧諸国など，国の統合や分離な
表-1 主要生産国における収量関数の推定結果（とうもろこしごり）

<table>
<thead>
<tr>
<th>国名</th>
<th>a</th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
<th>b₄</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 United States</td>
<td>6.024</td>
<td>2.484</td>
<td>-1.319</td>
<td></td>
<td></td>
<td>0.203</td>
</tr>
<tr>
<td>2 China</td>
<td>-170.300</td>
<td>3.541</td>
<td>-2.344</td>
<td>67.407</td>
<td>-32.124</td>
<td>0.402</td>
</tr>
<tr>
<td>3 Brazil</td>
<td>-53.810</td>
<td>-2.422</td>
<td></td>
<td></td>
<td></td>
<td>0.611</td>
</tr>
<tr>
<td>4 Argentina</td>
<td>-1.583</td>
<td>1.482</td>
<td></td>
<td></td>
<td></td>
<td>0.217</td>
</tr>
<tr>
<td>5 Mexico</td>
<td>101.911</td>
<td>1.486</td>
<td>-1.080</td>
<td>-58.050</td>
<td>33.766</td>
<td>0.471</td>
</tr>
<tr>
<td>6 India</td>
<td>-280.993</td>
<td>0.633</td>
<td>-0.267</td>
<td>111.706</td>
<td>-53.455</td>
<td>0.641</td>
</tr>
<tr>
<td>7 USSR</td>
<td>-22.152</td>
<td>0.713</td>
<td></td>
<td>12.350</td>
<td>-6.548</td>
<td>0.251</td>
</tr>
<tr>
<td>8 France</td>
<td>-86.744</td>
<td>0.504</td>
<td></td>
<td>28.839</td>
<td>-13.371</td>
<td>0.415</td>
</tr>
<tr>
<td>9 Indonesia</td>
<td>-135.259</td>
<td>1.619</td>
<td></td>
<td>16.198</td>
<td>4.175</td>
<td>0.544</td>
</tr>
<tr>
<td>10 South Africa</td>
<td>0.738</td>
<td>2.892</td>
<td>-1.233</td>
<td></td>
<td></td>
<td>0.434</td>
</tr>
</tbody>
</table>

注）下段カッコ内の数値はt値

表-2 主要生産国における収量関数の推定結果（米）

<table>
<thead>
<tr>
<th>国名</th>
<th>a</th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
<th>b₄</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 China</td>
<td>-199.141</td>
<td>1.782</td>
<td>-1.375</td>
<td>85.919</td>
<td>-42.253</td>
<td>0.258</td>
</tr>
<tr>
<td>2 India</td>
<td>-65.751</td>
<td>1.725</td>
<td>-0.606</td>
<td>8.318</td>
<td></td>
<td>0.736</td>
</tr>
<tr>
<td>3 Indonesia</td>
<td>-64.285</td>
<td>3.766</td>
<td>-1.587</td>
<td>5.465</td>
<td></td>
<td>0.449</td>
</tr>
<tr>
<td>4 Bangladesh</td>
<td>57.617</td>
<td>1.406</td>
<td>-0.796</td>
<td>-37.517</td>
<td>22.379</td>
<td>0.576</td>
</tr>
<tr>
<td>5 Viet Nam</td>
<td>-6.596</td>
<td>0.968</td>
<td>-0.325</td>
<td>30.705</td>
<td>22.855</td>
<td>0.669</td>
</tr>
<tr>
<td>6 Thailand</td>
<td>-37.604</td>
<td>1.271</td>
<td>-0.560</td>
<td>111.706</td>
<td></td>
<td>0.474</td>
</tr>
<tr>
<td>7 Myanmar</td>
<td>10.018</td>
<td>-0.860</td>
<td>0.311</td>
<td></td>
<td></td>
<td>0.581</td>
</tr>
<tr>
<td>8 Philippines</td>
<td>-173.143</td>
<td>4.588</td>
<td></td>
<td>642.260</td>
<td>-313.800</td>
<td>0.532</td>
</tr>
<tr>
<td>9 Brazil</td>
<td>-79.816</td>
<td>0.982</td>
<td>-0.458</td>
<td></td>
<td>7.506</td>
<td>0.528</td>
</tr>
<tr>
<td>10 Japan</td>
<td>-1.408</td>
<td>-0.746</td>
<td>0.365</td>
<td>1.433</td>
<td></td>
<td>0.506</td>
</tr>
</tbody>
</table>

注）下段カッコ内の数値はt値

表-3 主要生産国における収量関数の推定結果（小麦）

<table>
<thead>
<tr>
<th>国名</th>
<th>a</th>
<th>b₁</th>
<th>b₂</th>
<th>b₃</th>
<th>b₄</th>
<th>R²</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 China</td>
<td>-22.130</td>
<td>-2.717</td>
<td>1.595</td>
<td>11.599</td>
<td>-5.375</td>
<td>0.454</td>
</tr>
<tr>
<td>2 USSR</td>
<td>-7.277</td>
<td>1.128</td>
<td></td>
<td>1.151</td>
<td></td>
<td>0.114</td>
</tr>
<tr>
<td>3 India</td>
<td>-26.344</td>
<td>1.459</td>
<td>-1.043</td>
<td>4.387</td>
<td></td>
<td>0.719</td>
</tr>
<tr>
<td>4 United States</td>
<td>0.619</td>
<td>0.944</td>
<td>-0.383</td>
<td>0.649</td>
<td></td>
<td>0.116</td>
</tr>
<tr>
<td>5 France</td>
<td>-11.078</td>
<td>-1.080</td>
<td></td>
<td>2.547</td>
<td></td>
<td>0.281</td>
</tr>
<tr>
<td>6 Canada</td>
<td>10.287</td>
<td>2.373</td>
<td>-1.022</td>
<td>-0.729</td>
<td></td>
<td>0.592</td>
</tr>
<tr>
<td>7 Australia</td>
<td>30.880</td>
<td>0.655</td>
<td></td>
<td>15.104</td>
<td>-7.970</td>
<td>0.312</td>
</tr>
<tr>
<td>8 Germany</td>
<td>-4.381</td>
<td>-1.287</td>
<td></td>
<td>1.726</td>
<td></td>
<td>0.219</td>
</tr>
<tr>
<td>9 Pakistan</td>
<td>-83.908</td>
<td>0.935</td>
<td>-0.509</td>
<td>38.538</td>
<td>-19.513</td>
<td>0.404</td>
</tr>
<tr>
<td>10 Turkey</td>
<td>6.399</td>
<td>2.019</td>
<td>-1.242</td>
<td></td>
<td></td>
<td>0.096</td>
</tr>
</tbody>
</table>

注）下段カッコ内の数値はt値
3. 推計結果と考察

(1) 収量関数の推計結果

統計値と気象条件を用いた重回帰分析により，
主要栽培物収量の関数化を行った。その際，ステップ
ワイス法によりAICを最大値化させる変数の組み合わ
せを計算することで，統計的に優位ではない変数を
取り除いた。表1〜3に，ももろこし，米，小麦の2006年
の上位10カ国について推計結果を示す。

それぞれの穀物について気象条件についてみてみ
ると，栽培期間の合計にかかる係数であるb1とb2は
正値，二乗和の変数にかかる係数のb1とb2は負値と
なる傾向がある。すなわち，高温や多雨により二乗
和が増加することは収量を減少させる要因となる。
また，平均気温にかかる係数（b1とb2）のほうが，
降水量にかかる係数（b1とb2）よりも大きい値をと
っていることから，同じ割合で変化したときに，平
均気温のほうが収量変動に影響することがわかる。

また，次節では推定したパラメータを用いて気象
条件の変化が収量に与える影響について推計するが，
関数推定においてp値が0.1以上となった，統計的に
優位とはならなかった国・地域は除外した。表4に
それぞれの品目について，除外した国・地域を示す。

表4 p値が0.1以上となった国・地域

<table>
<thead>
<tr>
<th>品目</th>
<th>国・地域</th>
</tr>
</thead>
<tbody>
<tr>
<td>とうもろこし</td>
<td>Afghanistan, Burundi, Cambodia, Chad, Gabon, Haiti, Israel, Madagascar, Malawi, Mauritania, Poland, Rwanda, Timor-Leste (以上，13カ国)</td>
</tr>
<tr>
<td>米</td>
<td>Albania, Angola, Bhutan, Bosnia and Herzegovina, Cote d’Ivoire, Cuba, Congo DR, Eritrea, Gabon, Nicaragua, Korea, USSR, Syrian Arab Republic, Trinidad and Tobago (以上，14カ国・地域)</td>
</tr>
<tr>
<td>小麦</td>
<td>Botswana, Burundi, Cameroon, Iraq, Kuwait, Lesotho, Nigeria, Paraguay, Portugal, Somalia (以上，10カ国)</td>
</tr>
</tbody>
</table>

により推計することが可能である。

ここで，世界全体での気象条件の変化による収量
への影響をみるために，各国のそれぞれのパラメー
タを世界全体の耕地面積に対する当該国の耕地面積
との比を重みとし，加重平均を行った。表5に加重
平均したパラメータについて示す。

降水量と平均気温のいずれにおいても，栽培期間
の総和は正であり，二乗和については負となっている
。したがって，世界全体でも主要国でみられた傾
向と同じく，豪雨などの極端な気象が起きた際には
収穫量が減少する。品目ごとにみてみると，小麦は

(2) 気象条件の変化に対する収量変化率の推計

式(1)による収量の関数化により，推定されたパラ
メータは収量の降水量・平均気温鉄力性であること
から気象条件が変化した場合の収量の変化について
推計することが可能である。

したがって，降水量の変化に対する収量の変化率

\[\Delta Y_{pre} = (\Delta P_1)^{b_1} \times (\Delta P_2)^{b_2} \]

により，同様に，気温の変化に対する収量の変化率

\[\Delta Y_{tmp} = (\Delta T)^{b_3} \times (\Delta T)^{b_4} \]

により推計することが可能である。

表5 加重平均による収量関数のパラメータ

<table>
<thead>
<tr>
<th>品目</th>
<th>降水量</th>
<th>気温</th>
</tr>
</thead>
<tbody>
<tr>
<td>とうもろこし</td>
<td>1.537</td>
<td>-0.845</td>
</tr>
<tr>
<td>米</td>
<td>1.501</td>
<td>-0.786</td>
</tr>
<tr>
<td>小麦</td>
<td>0.548</td>
<td>-0.114</td>
</tr>
</tbody>
</table>

表6 降水量，気温の変化率に対する収量の変化率(%)

<table>
<thead>
<tr>
<th>品目</th>
<th>降水量変化率</th>
<th>気温変化率</th>
</tr>
</thead>
<tbody>
<tr>
<td>とうもろこし</td>
<td>-3.78</td>
<td>-22.48</td>
</tr>
<tr>
<td>米</td>
<td>-5.70</td>
<td>-33.83</td>
</tr>
<tr>
<td>小麦</td>
<td>-1.36</td>
<td>-7.48</td>
</tr>
</tbody>
</table>
4. まとめと今後の課題

本研究では、気象条件の変化が主要穀物生産に与える影響を推計することを目的として、もうろこし、米、小麦の3品目を対象として、単位収量を、作付情報を考慮した気象条件を用いて収量の関数化を行った。

推定されたパラメータを用いて気象条件が収量に与える影響を推計したところ、降水量と収量には正の関係があるものの、その影響は小さいことがわかった。一方で、気温と収量には負の関係があり、特に米は気温の変化率以上に収量が変動すると推計されたことより、今後の気候変動による気温上昇によって需給が逼迫する可能性が考えられる。

今後の課題として、栽培条件の変更を加味した将来予測が挙げられる。本研究では栽培歴や耕地について現在の条件で固定しているため、短期的には適用可能であるが、長期的には作付日の移動や品種改良など、気候変動に合わせた適応策がなされるべきと考えられる。加えて、気候変動による影響を加味する場合には、FACE実験をもとに確認されているCO₂の施肥効果についても考慮する必要がある。

参考文献
1) 農林水産省：穀物等の国際価格の動向, 2013.
13) Kang, S., S.S. Nair, K.L. Kline, J.A. Nichols, D. Wang,
Estimation of Main Crop Yield Functions Using Weather Conditions

Kenji SUGIMOTO1 and Kan-ichiro MATSUMURA2

1Graduate School of Environmental Studies, Nagoya University
2School of Policy Studies, Kwanseigakuin University

The purpose of this article is to estimate the yield function of main crops (maize, rice and wheat) using statistics and spatial data of daily weather conditions such as temperature and precipitation, crop, distributions, and crop calendar from 1961 to 2006. By using the estimated parameters of yield function, precipitation rise of 1% increases the production of maize by 0.15%, rice by 0.07%, and decreases the production of wheat by -0.32%, and a temperature rise of 1% decreases the production of maize by 3.78%, rice by 5.70%, and wheat by 1.36% assuming present crop areas, and cropping dates are unchanged. From this result, it can be concluded that a temperature rise induced by global climate change will lead to a reduction in production of major crops, especially rice.