3-3

関節炎モデルマウスにおけるNKT細胞の役割

○吉賀洋平1, 後藤大輔1, 大西康之1, 堤明人1, 松本功1, 伊藤聡1, 谷口克2住田孝之(1筑波大学医学部臨床内科, 2理化学研究所)

[目的]関節炎発症におけるNKT細胞の役割を明らかにするため、NKT-KOマウス（Jα281KO）におけるコラーゲン誘発関節炎（CIA）の発症について検討した。

[方法]1) NKT-KOマウスおよびそのwild type (C57BL/6)をCII+CFAで関節炎を誘発した後、関節炎発症率（IA）・関節炎スコア（AS）を比較するとともに、血中の抗CII抗体価をELISA法にて測定し比較した。2) NKT-KOマウスにwild typeの脾細胞から回収したNKT細胞を、CII+CFA免疫前日における静注し、CIA誘発後、IAおよびASをwild type、NKT-KOマウスと比較した。

[結果]1) NKT-KOマウスでは、wild typeに比してIAが低く（40% vs 90%）、ASも低値を示した（1.5 ± 2.2 vs 5.4 ± 3.2）。血中の抗CII抗体価については、NKT-KOマウスでは有意に低下していた（OD value 0.32 ± 0.16 vs 0.58 ± 0.08、P < 0.01）。

2) 予備実験の結果であるが、NKT細胞を移植したNKT-KOマウスでは、IA・ASはwild typeのレベルまで回復せず、むしろNKT-KOマウスよりも低値を示した（IA: 10% vs 50%、AS: 0.78 ± 2.3 vs 2.6 ± 4.1）。

[結論]CIA発症に、NKT細胞がeffector T細胞としての役割を担っている一方、NKT細胞の中には、関節炎に対し抑制的に働く細胞の存在も示唆された。

3-4

多発性硬化症寛解期におけるNK細胞のCD11c発現亢進

○荒浪利昌、高橋和也、三宅幸子、山村隆（国立精神・神経センター免疫研究部）

多発性硬化症（MS）は、自己反応性CD4+T細胞の介在する代表的な自己免疫疾患である。多くの症例で再発と覚解を繰り返すが、覚解維持機構に関する研究は遅れていた。我々は近年、MS覚解期にはIL-5産生能の亢進とCD95分子の発現を特徴とするNK細胞（NK2）が誘導され、覚解の維持に積極的に関与する可能性を示してきた。最近、CD95陽性NK細胞の割合が特に高い患者では、NK細胞が自己抗原反応性メモリーT細胞の迅速な活性化を抑制することを示し、我々の仮説の妥当性が確認された。

近年自己免疫性糖尿病モデルにおいて、CD11c陽性のNK細胞が制御性細胞として働くことが報告された。そこで、今回我々はMS覚解期NK細胞のCD11c発現について検討した。PBMCをFACS解析したところ、MS覚解期では健常者に比べNK細胞上のCD11c発現（MF1）の有意な発現上昇が見られた。CD95陽性NK細胞の割合が高い一部には、CD11c上昇群と不変群があった。覚解期に上昇したCD11cは再発時には低下しており、覚解期から再発への過程でNK細胞の機能的変化が起きていることが示唆された。以上より、NK細胞のCD11c発現亢進は、MSの覚解期を特徴づけることが明らかになった。CD11c陽性NK細胞は自己免疫応答制御に積極的に関与する可能性がある。