一部利用されているほか実用化的段階には至っていない。有機廃棄物が植物生理活性のあることはすでに示されており、R-Sn-X で示される中から、R として propyl, isopropyl, butyl, phenyl, benzyl X として halogen, aliphatic, aromatic, carbamate 等 100 種余の化合物について検討し、作用特性、構造と活性について検討した。

i) 大根（Raphanus sativus）, 居山ビエ（Panicum crusgalli）を用いた根伸長阻害検定では、ED50 を示すプロピルがあるに、大根に比しホウピエの感受性が明らかに高く、発根もしくは発芽後に生育が停止する症状が観察された。構造と活性では R 頃が 3 の中に存在し、また R として propyl > butyl > isopropyl = phenyl の順に活性が高くなる。X では halogen ≧ monosaccharide ≧ dicarbon acid ≧ aromatic ≧ carbamate の順に高い。heteroring では明らかに劣る傾向が示された。

ii) i) の植物を居山（Phaseolus mungo）を用い、川砂による発芽阻害効果は、居山ビエ > 大根 > 居山の順に高く、R については、i) と同傾向、X については明らかに差がみとめられなかった。

iii) ii) と同じ植物についての薬物抑制効果は、大根の感受性がもっとも高く、ついて居山、ビエの順であった。構造と活性では R によって活性が大きく、X の影響はきわめて少ない。

iv) 生理活性の主因子がメールにあることから、モル濃度による薬物発芽阻害を検定した。薬物の感受性は R の種類に関係なく薬物ビエが強い。また R としては propyl > butyl > phenyl > isopropyl の順に活性が高くなり、X の間では一定の傾向がみられなかった。

v) R-Sn-X と R-SnOH + X について活性を検討した。すなわち、(I) (B) SnOCOCB (II) (B) SnOH, (III) HOCOCB (IV) (II)+(III) の根伸長阻害効果を検定した結果、各薬物の ED50 は (I) 3 × 10^{-4} M, (II) 6 × 10^{-5} M, (III) 3 × 10^{-5} M, (IV) 6 × 10^{-5} M, (II), (IV) の活性が同じであることから, (III) の混在による共役効果が無い。(II), (IV) の結晶体である(I)の活性は明らかに劣り、本化合物に関する限り-O COCOCB が結合することによって、生理的活性が低下するものと考えられる。

29. ナフタリン系化合物の植物活性

字都宮大薬 竹松哲夫

(1) 従来ナフタリン系化合物については殺菌剤(2,3-ジクロロ-1,4 ナフタチノン)として使用されており、また殺藻、殺ウキサイに関する報告があるが、移植水田における潜水条件下での土壌処理剤としてその研究に関して報告がなされていない。筆者は多くのナフタキノン系化合物の検討をつづけ1,2 活性度の高い物質を知り得たので、その概要を報告したい。

(2) 植物活性の高いナフタキノン系化合物の共通の生理作用

i) 植物条件下で一年生雑草の発芽防止力が大きい（根伸長阻害、葉茎形成阻害）。

ii) 土壌表面壊着性が高く、300 〜 500 g/10 a で人工降雨 20 〜 30 mm 条件下で 1 cm 内外。

(3) 10a に 1,000 ppm でやや認める。

(4) 根系吸収毒性

いずれも 5 〜 10 ppm で根伸長阻害、葉茎、葉柄等の発育阻害を示す。

(5) マツバイなど一時的で有効性が乏しい。

(6) 各剤とも移植水稲には 1,000 g/10 a でも薬害が生じない。

30. 3-フェノキシピリダジン及び関連化合物の植物生理活性

三共農薬研究所 城島輝臣、川久保克彦

東大農化 田村三郎

宇部宮大農 竹松哲夫

ピリダジン化合物のなかから、植物生理活性を有する化合物を見出す研究を続けた結果、フェノキシピリダジン化合物のなかに殺草活性の高い化合物が存在することを見出した。とくに、3-フェノキシピリダジン(I)は殺草活性がきわめて高いばかりでなく、生長調整作用も示されている。今回は I 及びその関連化合物の植物生理活性につき報告する。

【方法】3-フェノキシピリダジン類は主として対応する 3-クロロ-6-フェノキシ体の接触還元により合成