Various Bootstrap-Cross-Validation Methods for Model Selection in Density Estimator

Kiyotake KISHI

Abstract
Bayesian evidence is deduced from metrized-sample-space as shown in JSTAT9 (refer to [1]), where we introduce the method of bootstrap-cross-validation, based on Bayes formula, however we were not concerned with whether the bootstrap-cross-validation contained other methods than the Bayes formula. We now exhibit the several methods of bootstrap-cross-validation, based on Bayesian and not on Bayesian.

1. Introduction
Let us denote $y=(y_1, y_2, \ldots, y_N)^T$ be the given data consists with sample size N, θ be the density of unknown population distribution, and v be the model or hyper-parameter for density estimator. Then, we represents $\theta(y,v)$ be the density which estimated from y and v, and ideal choice of $v=V_{OPT}$ will enable adjustment to $\theta(y,v_{OPT})=\theta^*$.

Make good use of “bootstrap-resampling” that is, same-size resamples may be drawn repeatedly from the original sample. Let denote $y(k)$ be the bootstrap-resample from y with size N, repeatedly K times as $y(k),(k=1,2,\ldots,K)$, these re-samples construct the union of pseudo-data named “pseudo-data-space” symbolized as $Y(y)$, and to use this pseudo-data $y(k)\in Y(y)$, we denote $\theta(y(k),v)$ be the density estimator conditional on $y(k)$ and v. Now we can denote “parameter-space” symbolized as $\Theta(v) \equiv \{ \theta(y(k),v) : k=1,2,\ldots,K \}$.

Now, again make good use of “smoothed-bootstrap-resampling” that is, same-size resamples may be drawn repeatedly from the absolutely continuous distribution of the estimator $\theta(y(k),v)\in \Theta(v)$. Use this smoothed-bootstrap-resampling to construct the union of finite number of pseudo-data $y(j,y(k),v)$ which is drawn repeatedly N times from $\theta(y(k),v)$, and also repeatedly same procedure J times iteration as $j=1,2,\ldots,J$ and obtain the union of J-th number of pseudo-data named “sample-space” symbolized as $Y(y(k),v)\equiv \{ y(j,y(k),v) : j=1,2,\ldots,J \}$.

Same Group of Empirical Distribution
Now presume $y(j,y(k),v)$ and $\theta(y(k),v)$ to be empirical distributions each other, then absolutely continuous distribution as $\theta(y(k),v)$ and purely discontinuous distribution as pseudo-data $y(j,y(k),v)$ are the same distribution from the empirical viewpoint because of only a resampling relation between the two.

2. Definition of Distance between Two Distributions
An empirical distribution of the estimator $\theta(y(k),v)$ is an absolutely continuous distribution; on the other hand an empirical distribution of the pseudo-data as like $y(t)$ and $y(j,y(k),v)$ are both purely discontinuous distributions.

Therefore, let denote μ_1 be a purely discontinuous distribution, μ_2 be an absolutely continuous distribution, and $\mu_3 \equiv \lambda \mu_1 + (1-\lambda) \mu_2$ be a new drawing distribution, where λ be an arbitrary constant within the range of $0<\lambda<1$. Then new deduced measure μ_3 guarantee that μ_3 satisfy an absolutely continuous for both μ_1 and μ_2 measures simultaneously. Consequently, there exists a Radon-Nikodym differential $\mu_1(dx)/\mu_3(dx)$ and $\mu_2(dx)/\mu_3(dx)$, these are called the density of μ_1 and μ_2 with respect to μ_3 on separable measure space X, corresponding to the density of absolutely continuous distribution with respect to Lebesgue measure. From this, we can defined the metric between μ_1
and \(\mu_2 \) as follows (refer to [2]):

\[
\mathbf{d}(\mu_1, \mu_2) = \sqrt{\int_X \left(\mu_1(dx) - \mu_2(dx) \right)^2} = \sqrt{\int_X \left(\mu_1(dx) - \sqrt{\mu_2(dx)} \right)^2}
\]

where, fortunately both the new drawing measure \(\mu_3 \) and the arbitrary constant \(\lambda \) are disappeared.

3. **Bootstrap-Cross-Validation, Not Based on Bayes’ Formula - (1).**

Simple method of bootstrap-cross-validation is as analogous to the MISE: make use of two distributions \(y \) the given-data and the estimator \(\theta(y(k),v) \) which belong to \(\Theta(v) \) as below:

\[
e_1(v) = \frac{1}{K} \sum_{k=1}^{K} d(y, \theta(y(k),v)) \]

where \(y \) is a purely discontinuous and \(\theta(y(k),v) \) is an absolutely continuous distribution, hence we set to \(\mu_1 \equiv y \) and \(\mu_2 \equiv \theta(y(k),v) \) in Eq.(1) for the construction of drawing distance \(d(y, \theta(y(k),v)) \).

4. **Bootstrap-Cross-Validation, Not Based on Bayes’ Formula - (2).**

The basic principle for the choice of optimal model with stable is that: The optimal model adapted to the given data \(y \) is essentially influenced by the character proper to given only one data set with size \(N \). Therefore it might be better to adapt to the expectation of given data as \(E[y] \) and not to \(y \) only. Bootstrap-resampling is effective in diminishing to the character proper to only one given data, and the diminishing technique is composed of two steps average as shown below. First-average to be the average of all the pseudo-data \(y(t) = Y(y_t), (t = 1,\ldots,K) \) except \(t = k \), and the second-average to be the average of all the parameter \(\theta(y(k),v) \equiv \Theta(v), (k = 2,\ldots,K) \) where \(v \) fixed that is to say,

\[
e_2(v) = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{K-1} \sum_{t=1(t\neq k)}^{K} d(y(t), \theta(y(k),v)) \]

5. **Bootstrap-Cross-Validation, Based on Bayes’ Formula - (1).**

Let’s denote \(\Theta(v) = \{ \theta(y(k),v) | (k = 1,\ldots,K) \} \) be the parameter-space: the union of probability density estimators, conditional model \(v \). Then Bayes’ formula represents as below.

\[
P[\theta(y(k),v) | \Theta(v)] = \frac{P[\Theta(v) | \theta(y(k),v)]P[\theta(y(k),v)]}{\sum_{\theta(y(k),v)\in\Theta(v)} P[\Theta(v) | \theta(y(k),v)]P[\theta(y(k),v)]} \]

On parameter-space \(\Theta(v) \) all points \(\theta(y(k),v) (k = 1,\ldots,K) \), are equally likely a priori then we have:

\[
P[\theta(y(k),v) | \Theta(v)] = 1/K, \quad P[\Theta(v)] = 1, \quad P[\Theta(v) | \theta(y(k),v)] = 1, \quad P[\theta(y(k),v)] = 1/K \]

Let took total summation respect to \(k \) with both sides of Eq.(4), then we obtain as follows:

\[
P[\theta(y(k),v) | \Theta(v)] = \frac{P[\Theta(v) | \theta(y(k),v)]P[\theta(y(k),v)]}{\sum_{\theta(y(k),v)\in\Theta(v)} P[\Theta(v) | \theta(y(k),v)]P[\theta(y(k),v)]} \]

Here, we attempt to construct a likelihood function as \(L[\theta(y(k),v) | \Theta(v)] \) which corresponding to the probability for \(P[\Theta(v) | \theta(y(k),v)] \), where parameter-space \(\Theta(v) \) plays a role of “Bayesian-given-data”, and \(P[\theta(y(k),v)] \) indicates a prior-probability as equally a priori as Eq.(5): \(P[\theta(y(k),v)] = 1/K = \text{constant} \). Therefore we obtain next formula:

\[
P_{\text{POST}}[\theta(y(k),v) | \Theta(v)] = \frac{L[\theta(y(k),v) | \Theta(v)]}{\sum_{\theta(y(k),v)\in\Theta(v)} L[\theta(y(k),v) | \Theta(v)]} \]

Metrizable for \(\Theta(v) \) Space

The central point of parameter-space \(\Theta(v) \) is equal to the expectation of parameter-points \(\theta(y(k),v), (k = 1,\ldots,K) \).

Then, let’s denote \(E[\theta(y(k),v)] = \bar{\theta}(v) = \frac{1}{K} \sum_{k=1}^{K} \theta(y(k),v) \) be the central point of \(\Theta(v) \),
and $d(\theta(y(k),v), \overline{\theta}(v))$ be the distance between $\theta(y(k),v)$ and $E[\theta(y(k),v)] = \overline{\theta}(v)$ on $\Theta(v)$ space.

Definition of a likelihood function

A necessary condition for a property of the likelihood function is monotone decreasing as increasing the distance from the parameter-point $\theta(y(k),v)$ to the central point of parameter-space $\Theta(v)$. For example we defined the likelihood function as below:

$$L[\theta(y(k),v) | \Theta(v)] = \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} d(\theta(y(k),v), \overline{\theta}(v))^2 \right]$$ \(\text{(8)}\)

Or, if purely discontinuous case, $\theta(y(k),v)$ in Eq.(8) may be replaced by $y(t)$ as $d(y(t), \overline{\theta}(v))$.

Now we consider the extension of the parameter-space which added one pseudo-data-point as $y(t)$ to the parameter-space $\Theta(v)$ denoted by $\overline{\Theta}(v) = \Theta(v) + y(t) = \{ \theta(1,v), \theta(2,v), \theta(3,v), \ldots, \theta(K,v), y(t) \}$.

Then, the probability of occurrence of the $y(t)$ on $\overline{\Theta}(v)$ would be next formula which adding one sample-point to denominator for Eq.(7).

$$P_{\text{POST}}[y(t) | \overline{\Theta}(v)] = \frac{L[y(t) | \Theta(v)]}{\sum_{\theta(y(k),v) \in \Theta(v)} L[\theta(y(k),v) | \Theta(v)] + L[y(t) | \Theta(v)]}$$ \(\text{(9)}\)

We are ready to define the expectation of Bayesian evidence as follows:

$$E[P[y | v]] = E_T[P_{\text{POST}}[y(t) | \overline{\Theta}(v)]] = \frac{1}{K} \sum_{i=1}^{K} P_{\text{POST}}[y(t) | \overline{\Theta}(v)]$$ \(\text{(10)}\)

6. **Bootstrap-Cross-Validation, Based on Bayes’ Formula -(2) (refer to [1]).**

Let’s denote $\Omega = \{Y(y(k),v):(k=1,2,\ldots,K)\} = \{Y(j,y(k),v); (j=1,2,\ldots,J; k=1,2,\ldots,K)\}$ be the universal event space and then Bayes’ formula represents as below.

$$P[y(j,y(k),v) | Y(y(k),v)] = P[Y(y(k),v) | Y(j,y(k),v)]P[y(j,y(k),v)]$$ \(\text{(11)}\)

Where all points $Y(j,y(k),v)$ and $Y(y(k),v)$; $(j=1,2,\ldots,J; k=1,2,\ldots,K)$, are equally likely a priori then we have:

$$P[y(j,y(k),v) | Y(y(k),v)] = \frac{1}{J}, \quad P[Y(y(k),v) | y(j,y(k),v)] = 1, \quad P[y(j,y(k),v)] = 1/K, \quad P[Y(y(k),v)] = 1/J$$ \(\text{(12)}\)

Let took total summation respect to j with both sides we obtain as below:

$$P[Y(y(k),v)] = \sum_{j,y(k),v \in Y(y(k),v)} P[Y(y(k),v) | y(j,y(k),v)]P[y(j,y(k),v)]$$ \(\text{(13)}\)

Substitute (13) for (11), then we obtain as follows:

$$P[y(j,y(k),v) | Y(y(k),v)] = \frac{P[Y(y(k),v) | y(j,y(k),v)]P[y(j,y(k),v)]}{\sum_{y(j,y(k),v) \in Y(y(k),v)} P[Y(y(k),v) | y(j,y(k),v)]P[y(j,y(k),v)]}$$ \(\text{(14)}\)

Here, we attempt to construct a likelihood function as $L[y(j,y(k),v) | Y(y(k),v)]$ which corresponding to the probability for $P[Y(y(k),v) | y(j,y(k),v)]$, and substitute this likelihood for (14), then we obtain posterior probability as follows:

$$P_{\text{POST}}[y(j,y(k),v) | Y(y(k),v)] = \frac{L[y(j,y(k),v) | Y(y(k),v)]P[y(j,y(k),v)]}{\sum_{y(j,y(k),v) \in Y(y(k),v)} L[y(j,y(k),v) | Y(y(k),v)]P[y(j,y(k),v)]}$$ \(\text{(15)}\)

Where sample-space $Y(y(k),v)$ plays a role of “Bayesian-given-data”, and $P[y(j,y(k),v)]$ indicates a prior-probability as equally likely a priori then from Eq.(12), we have $P[y(j,y(k),v)] = 1/(J \times K) = \text{constant}$. Hence we obtain next formula:
\[
P_{\text{post}}[y(j,y(k),v)|Y(y(k),v)] = \frac{L[y(j,y(k),v) | Y(y(k),v)]}{\sum_{y(j,y(k),v) \in Y(y(k),v)} L[y(j,y(k),v) | Y(y(k),v)]} \quad \ldots(16)
\]

Metrizable for \(Y(y(k),v)\) Space

Let's new attempt to make use of a distance from sample-point \(y(j,y(k),v)\) to central-point of the sample-space \(Y(y(k),v)\). The central point of sample-space \(Y(y(k),v)\) is equal to the expectation of sample-points \(y(j,y(k),v)\) \((j=1,2,\ldots,J)\) which drawing from \(\theta(y(k),v)\) by \(J\) times. Therefore, \(E[y(j,y(k),v)] = \theta(y(k),v)\) is the central point of sample-space \(Y(y(k),v)\). Then, let's denote \(d(j,y(k),v)\) be the distance between \(y(j,y(k),v)\) and \(\theta(y(k),v)\) on \(Y(y(k),v)\) space. We denote \(\sigma\) be the standard deviation metric that contains 68.3\% sample-points within the sphere \(|d(j,y(k),v)| < \sigma\) on the region of sample-space \(Y(y(k),v)\), and we redefine \(d(j,y(k),v) = d(j,y(k),v) / \sigma\) as a standardized metric. Now, we are ready for construct the likelihood function as \(L(d(j,y(k),v))\) equivalent to the \(L[y(j,y(k),v) | Y(y(k),v)]\) described above, and replaced in Eq.(16) by this, then we can rewrite the posterior-probability given the metric space \(Y(y(k),v)\) after measuring to the sample-space, as below:

\[
P_{\text{post}}[y(j,y(k),v)|Y(y(k),v)] = \frac{L[y(j,y(k),v) | Y(y(k),v)]}{\sum_{y(j,y(k),v) \in Y(y(k),v)} L[y(j,y(k),v) | Y(y(k),v)]} = \frac{L(d(j,y(k),v))}{\sum_{j=1}^{J} L(d(j,y(k),v))} \quad \ldots(17)
\]

Where

\[
L(d(j,y(k),v)) = \frac{1}{\sqrt{2\pi}} \exp \left[-\frac{1}{2} \left(d(j,y(k),v) \right)^2 \right] \quad \ldots(18)
\]

Definition of a Posterior-Probability for Arbitrary Pseudo-Data

Now, make use of the same \(\sigma\) above, we denote \(d(y(k),v)\) be a standardized metric between arbitrary pseudo-data \(y(t)\) and \(\theta(y(k),v)\) the central point of sample-space \(Y(y(k),v)\). And we consider the extension of the sample-space which added one sample-point as \(y(t)\) to the sample-space \(Y(y(k),v)\). Then, the probability of occurrence of the \(y(t)\) on this extension of sample-space would be next formula which adding one sample-point to denominator for Eq.(17).

\[
P_{\text{post}}[y(t) | Y(y(k),v)] = \frac{L(d(t,y(k),v))}{\sum_{j=1}^{J} L(d(j,y(k),v)) + L(d(t,y(k),v))} \quad \ldots(19)
\]

Where \(Y(y(k),v) \equiv \{ y(1,y(k),v), y(2,y(k),v), \ldots, y(J,y(k),v) \}\)

First-average to be the average of all the pseudo-data \(y(t) \in Y(y(k) ,\{t=1, \ldots, K\})\) except \(t=k\), that is to say,

\[
E[P_{\text{post}}[y(t) | Y(y(k),v)]] = \frac{1}{(K-1)} \sum_{t=1, t\neq k}^{K} \frac{L(d(t,y(k),v))}{\sum_{j=1}^{J} L(d(j,y(k),v)) + L(d(t,y(k),v))} \quad \ldots(20)
\]

Second-average to be the average of all the sample-spaces \(Y(y(k),v) \in \Omega,\{k=1, 2, \ldots, K\}\) where \(v\) fixed that is to say,

\[
E[P_{\text{post}}[y(t) | Y(y(k),v)]] = E_k \left[E_t \left[P_{\text{post}}[y(t) | Y(y(k),v)] \right] \right] = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{(K-1)} \sum_{t=1, t\neq k}^{K} \frac{L(d(t,y(k),v))}{\sum_{j=1}^{J} L(d(j,y(k),v)) + L(d(t,y(k),v))} \quad \ldots(21)
\]

Now, we define Eq.(21) to be the expectation of Bayesian evidence.

References
