Development of Walking Analysis System Using by Motion Sensor with Mobile Force Plate*

Wataru ADACHI**, Nobutaka TSUJIUCHI**, Takayuki KOIZUMI**, Kouzou SHIOJIMA***, Youtaro TSUCHIYA*** and Yoshio INOUE****

** Department of Mechanical Engineering, Doshisha University
Tatara Miyakodani 1-3, Kyotanabe-city, Kyoto, 610-0321 Japan
E-mail: etk1301@mail4.doshisha.ac.jp, ntsujiuc@mail.doshisha.ac.jp, tkoizumi@mail.doshisha.ac.jp

*** Tec Gihan Co., Ltd.
Nishinohata 1-22, Okubo-cho, Uji-city, Kyoto 611-0033 Japan

**** Department of Mechanical Engineering, Kochi University of Technology
Miyanokuchi 185, Tosayamada-cho, Kami, Kochi, 782-8502, Japan

Abstract
In walking analysis, which is one useful method for efficient physical rehabilitation, the ground reaction force, the center of pressure and the body orientation data are measured during walking. In the past, these data were measured by a 3D motion analysis system consisting of high-speed cameras and force plates, which must be installed in the floor. However, a conventional 3D motion analysis system can measure the ground reaction force and the center of pressure just on force plates during a few steps. In addition, the subjects’ stride lengths are limited because they have to walk on the center of the force plate. These problems can be resolved by converting conventional devices into wearable devices. We used a measuring device consisting of portable force plates and motion sensors. We developed a walking analysis system that calculates the ground reaction force, the center of pressure, and the body orientations and measured a walking subject to estimate this system. We simultaneously used a conventional 3D motion analysis system to compare with our development system and showed its validity for measurements of ground reaction force, the center of pressure and posture of lower limb.

Key words: Wearable Sensor, Force Plate, Motion Analysis, Ground Reaction Force, Center of Pressure, Stick Picture

1. Introduction
The importance of rehabilitation in the treatment for walking disorders due to such illnesses as strokes continues to increase (1), (2). When a physical therapist instructs a patient during rehabilitation, information about the joint moment in the lower limbs is very useful (3), (4). Conventionally, the joint moments of lower limbs are calculated by inverse dynamics applied to data obtained from a force plate and a 3D motion analysis system (high-speed cameras). However, because these analysis devices must be installed in experimental facilities, their use conditions and measurable amount of steps are limited. If multiple force plates are installed, a large space and great expense are necessary, and the possibility is very low. In addition, the locations of the force plates don’t match the steps of all people. A method that resolves those problems converts force plates and the 3D motion analysis system into wearable devices. In motion analysis, a wearable motion sensor is used that...
consists of acceleration, gyro, and geomagnetism sensors, but the wearable force plate is not put to practical use. An analogous device, which is inserted in footwear and measures pressure distribution, is commercially available and is suitable for the qualitative evaluation of pressure distribution. But maintaining the precision of a force plate is difficult, because the time variation of the output and quantitative precision is insufficient. In addition, this force plate only measures force vertically.

Based on the above situation, we developed a wearable walking analysis system called the “M3D system” (5) (mobile force plate and 3D motion analysis system) that consists of a small portable force plate and a motion sensor consisting of acceleration, gyro, and geomagnetism sensors. The M3D system has less cost and fewer constraints. In walking experiments, ground reaction force, pressure distribution, and limb postures are calculated by the outputs of mobile force plates and motion sensors.

In this research, we focused on the ground reaction force and the center of pressure. We measured different kinds of walking experiments to evaluate our M3D system and simultaneously used a conventional 3D motion analysis system for comparison. As a result, the validity of our M3D system was demonstrated.

2. M3D System

2.1. Constitution of M3D system

First, we explain the constitution of the M3D system (Fig.1).

The M3D system consists of six motion sensors (called “M3D-MS”), four mobile force plates (“M3D-FP”), and a data transmitter (“M3D-DT”). The specifications of these are shown in Tables 1 and 2.
Figures 2, 3, and 4 show the M3D-MS, M3D-FP, and M3D-DT sensors. Since they are small and lightweight, the subjects only receive a light strain.

M3D-MS consists of a built-in three-axis acceleration sensor (LIS331DLH: STM), a three-axis gyro sensor (two-axis gyro sensor: LPR530AL and one-axis gyro sensor: LY530ALH: STM), and a three-axis geomagnetism sensor (HMC5843: Honeywell). In motion measurement, six M3D-MSs are fixed (Fig. 1) and measure the kinematics of the lower limbs and the trunk. M3D-FP has two force plates on one side of foot. A force plate includes three force sensors. This force sensor is a thin three-axis force sensor (USL06-H5-500N-C: TEC Gihan). M3D-FP can measure the foot kinematics because it also has an acceleration sensor, a gyro sensor, and a geomagnetism sensor like M3D-MS.

The data measured by M3D-MS and M3D-FP are transferred to PC via M3D-DT and recorded on PC. We calculated the ground reaction force and center of pressure during experiments using the recorded data.

2.2. Definition of coordinate system

Hereafter, “S”, when written as a subscript to the upper left, means the sensor coordinate system, and “G” means the global coordinate system. Both coordinate systems are right-handed coordinate systems. The positive direction of the rotation of each axis is clockwise. We define a sensor coordinate system comprised of $^S\mathbf{x}$, $^S\mathbf{y}$, and $^S\mathbf{z}$ in a M3D-FP (Fig. 3).

We express the following: ground reaction force ($^G\mathbf{F}$) [N], moment ($^G\mathbf{M}$) [N \cdot m], and center of pressure ($^G\mathbf{C}_{op}$) (G_6,G_7) [m]:
\[
\begin{bmatrix}
S_F \\
S_M \\
S_Cop
\end{bmatrix}
= \begin{bmatrix}
S_FX \\
S_FY \\
S_FZ
\end{bmatrix}
= \begin{bmatrix}
F_{x1} - (F_{x2} + F_{x3})\sin 30^\circ + (F_{y2} - F_{y3})\cos 30^\circ \\
F_{y1} - (F_{y2} + F_{y3})\sin 30^\circ + (F_{x3} - F_{x2})\cos 30^\circ \\
F_{z1} + F_{z2} + F_{z3}
\end{bmatrix}
\]

\[
S_M = \begin{bmatrix}
S_MX \\
S_MY \\
S_MZ
\end{bmatrix}
= \begin{bmatrix}
-rF_{z1} + r(F_{z2} + F_{z3})\sin 30^\circ \\
r(F_{x2} - F_{z3})\cos 30^\circ \\
r(F_{x1} + F_{x2} + F_{x3})
\end{bmatrix}
\]

\[
S_Cop = \begin{bmatrix}
S_CopX \\
S_CopY \\
S_CopZ
\end{bmatrix}
= \begin{bmatrix}
-MY/FZ \\
MY/FZ \\
0
\end{bmatrix}
\]

Here, \(r \) [m] is distance between origin and center of three-axis force sensor, \(r = 0.03 \).

Fig. 4 Definition of total force coordinate system

Generally, two M3D-FPs are used in a one-sided foot. We identify the origin of the total force coordinate system in a one-sided foot with the origin of the sensor coordinate system in the heel-side M3D-FP (Fig. 4). We define; the origin of the sensor coordinate system in one foot is the same as the origin of the heel side M3D-FP sensor coordinate system. And we express the following: ground reaction force, moment and center of pressure in the one foot. Here, \(d \) [m] is the distance between the centers of two M3D-FPs:

\[
\begin{bmatrix}
S_F \\
S_M \\
S_Cop
\end{bmatrix}
= \begin{bmatrix}
S_{F_{x1}} + S_{F_{x1}} \\
S_{F_{y1}} + S_{F_{y1}} \\
S_{F_{z1}} + S_{F_{z1}}
\end{bmatrix}
\]

\[
\begin{bmatrix}
S_MX \\
S_MY \\
S_MZ \\
S_{M_{x2}} + S_{M_{x2}} + S_{F_{z1}}
\end{bmatrix}
= \begin{bmatrix}
-S_{M_{y1}}/S_{FZ} \\
S_{M_{y1}}/S_{FZ} \\
S_{M_{x1}}/S_{FZ}
\end{bmatrix}
\]

Hereafter, “toe”, when written as a subscript to the lower right, means M3D-FP output of the toe, and “heel” means M3D-FP output of the heel.
2.3. Posture of lower limb

We define each position of hip, knee, ankle joints and center of M3D-FP is \(O \) and each vector between joints is \(L \). And the model of lower limb when wearing the M3D system is as shown in Fig. 5.

Fig. 5 Lower leg model with M3D system

This Lower limb model is based on the following assumption. This assumption is used to calculate the lower limb posture. Regarded as subject stands in one of four M3D-FP. Then the central coordinate of this M3D-FP does not move. In fact, to calculate the lower limb model, we consider the M3D-FP measuring the largest ground reaction force as ground point. Sensors are fixed to each leg, and the magnitude of the vector \(L \) does not change. So that \(L \) is rotated along with the sensor coordinate system. At this time, by finding the rotation of the coordinate system of each sensor for a fixed coordinate system, we calculate the joint coordinates in order from the ground point. We define; the sampling period is \(\Delta t \) [s] and the angular velocity measuring by gyro sensor is \(\omega \) [rad/s]. We represent the angle variation between samples \(\Delta \theta \) by the following equation.

\[
\Delta \theta = \begin{bmatrix}
\Delta \theta_X \\
\Delta \theta_Y \\
\Delta \theta_Z
\end{bmatrix} = \begin{bmatrix}
(\omega_{X,i} + \omega_{X,i-1})\Delta t / 2 \\
(\omega_{Y,i} + \omega_{Y,i-1})\Delta t / 2 \\
(\omega_{Z,i} + \omega_{Z,i-1})\Delta t / 2
\end{bmatrix}
\]

(7)

Moreover, rotation matrices around each axis of the sample \(i \) to sample \(i-1 \) are expressed following:

\[
R_{X,i-1} = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos \Delta \theta_X & -\sin \Delta \theta_X \\
0 & \sin \Delta \theta_X & \cos \Delta \theta_X
\end{bmatrix}
\]

(8)

\[
R_{Y,i-1} = \begin{bmatrix}
\cos \Delta \theta_Y & 0 & \sin \Delta \theta_Y \\
0 & 1 & 0 \\
-\sin \Delta \theta_Y & 0 & \cos \Delta \theta_Y
\end{bmatrix}
\]

(9)

\[
R_{Z,i-1} = \begin{bmatrix}
\cos \Delta \theta_Z & -\sin \Delta \theta_Z & 0 \\
\sin \Delta \theta_Z & \cos \Delta \theta_Z & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

(10)

Furthermore, the matrix concentration of those matrices is expressed following:

\[
R_{i-1} = R_{X,i-1}^i R_{Y,i-1}^i R_{Z,i-1}^i
\]

(11)
Therefore, rotation matrix R for a fixed coordinate system is represented by the following equation. Here, E_0 is the initial position matrix of the sensor for the fixed coordinate system:

$$R = E_0 R_1 R_2 \ldots R_{i-1}$$ \hspace{1cm} (12)

As an example, we deal in the stance at right heel. Coordinates of each joint in any sample i are represented by the following equation using the lower limb model. Here, $|i|$ is the parameter in the arbitrary sample:

$$G_0^{\text{Right heel}} = \begin{bmatrix} G_0^{\text{Right heel}}_{\text{X}} \\ G_0^{\text{Right heel}}_{\text{Y}} \\ 0 \end{bmatrix}_{\text{L-1}} + R_{\text{Right heel}}$$

By connecting each point determined in this way, we grasp the lower limb posture in the form of stick picture.

3. Verification of experiment

3.1. Composition of Measurement instrument

To evaluate our M3D system, we conducted two kinds of walking experiments. At the same time, we used a MAC 3D system and compared it with our development system that consisted of ten infrared cameras (Eagle Digital Camera: Motion Analysis) and two force plates (BP400600: AMTI) installed in our experimental facility. Figure 6 shows the composition of the measurement instruments in our experiments. We synchronized the M3D system and the 3D motion analysis system. The sampling rate was 500 Hz in both systems.

![Fig. 6 Composition of measurement instruments](image-url)
3.2. Condition of experiments

One healthy 23-year-old male subject who weighed 62 kg and was 170 cm tall participated in two kinds of experiments whose conditions are shown below.

Exp. 1: Quasi-static load addition (Fig. 7(a))
Exp. 2: Walking straight (Fig. 7(b))

![Fig. 7 Conditions](image)

(a) Quasi-static load
(b) Walking straight

4. Experiment result

4.1. Ground Reaction Force

For comparison, since the result of the ground reaction force is expressed by a global coordinate system, the M3D-FP output is obtained by a coordinate transformation in its vertical axis circumference. The outputs are expressed as follows:

\[
\begin{pmatrix}
GFX \\
GFY \\
GFZ
\end{pmatrix} = \mathbf{E}_Z \begin{pmatrix}
SFX_{tot} \\
SFY_{tot} \\
SFZ_{tot}
\end{pmatrix} + \mathbf{E}_{heel} \begin{pmatrix}
SFX_{heel} \\
SFY_{heel} \\
SFZ_{heel}
\end{pmatrix}
\]
(14)

Here, rotation matrix \(\mathbf{E}_Z \) is calculated by the coordinates of the infrared markers that are attached to M3D-FP. \(\mathbf{E}_Z \) is expressed as follows:

\[
\mathbf{E}_Z = \begin{bmatrix}
\cos \theta_x & -\sin \theta_x & 0 \\
\sin \theta_x & \cos \theta_x & 0 \\
0 & 0 & 1
\end{bmatrix}
\]
(15)

Each ground reaction force is shown in Fig. 8. Here, we show the right foot. The errors between M3D-FP and the mounted force plate are less than 6.4% in all axis directions.

![Fig. 8 Ground reaction force: right foot](image)

(a) Quasi-static Load Addition
4.2. Center of pressure

Likewise, each ground reaction force is shown in Fig. 9. The errors between the two are less than 4.7%

![Fig. 9 Center of pressure: right foot](image)

4.3. Posture of lower limb

We show in the form of a stick picture as shown in Fig. 10. The trajectory of the lower limbs is calculated using the data obtained by the M3D system during walking a straight line (Experiment 2). More specifically, the stick picture is obtained by using posture angle information of the lower limbs. This information is calculated from the measurement data of the motion sensor attached to the lower limbs. Hence we clarified that be able to measure the attitude of the lower limbs during walking by using the M3D system.

![Fig. 10 Stick picture in walking straight: Exp. 2](image)

5. Correction of error

5.1. Precision improvement of the ground reaction force

We believe that the installation precision of the sensor influences the measurement error. Under the influence of such sensor error, the relations of the calculation result of true ground reaction force F and M3D-FP are as follows:

$$
\begin{align*}
F &= \begin{bmatrix} FX \\ FY \\ FZ \end{bmatrix} = A \begin{bmatrix} B_{ heel}^5 FX_{ heel} + B_{ heel}^5 FX_{ heel} \\ B_{ heel}^5 FY_{ heel} + B_{ heel}^5 FY_{ heel} \\ B_{ heel}^5 FZ_{ heel} + B_{ heel}^5 FZ_{ heel} \end{bmatrix}
\end{align*}
$$

Here, A is the correction coefficient caused by the installation error of M3D-FP. B is the correction coefficient caused by the installation error of the three-axis force sensors that are included in M3D-FP. Without correcting them, the errors are proportional to sensor output. In the three force components, the FZ output is the biggest value. Moreover, FZ does not do coordination transformation. Thus, a correction coefficient about FZ can be easily calculated. The results of Exp. 1 are applied to the expression as follows:
The provided \(A_z \) is substituted into (14) and corrects the Exp. 2 result. The corrected ground reaction force is shown in Fig. 11. The \(FZ \) errors decreased to less than 1.3% after the correction.

![Corrected ground reaction force: Exp. 2](image)

5.2. Precision improvement of center of pressure

The trajectory shapes of the center of pressure accord well, but gaps occur in the whole, probably caused by this gap that is offset of the central coordinate of M3D-FP. So the center of the pressure coordinate of the mounted force plate is expressed as follows:

\[
\tilde{\text{Cop}}_{FP} = E_{\text{Right heel}}^{-1} \{ \text{Cop}_{FP} - \text{O}_{\text{Right heel}} \} - e_{\text{Cop}}
\]

As an example, (11) shows the right foot. Here, \(\text{O}_{\text{Right heel}} \) is the coordinate of the right heel. \(e_{\text{Cop}} \) is the arithmetic average of the trajectory difference between M3D-FP and the mounted force plate. The corrected results are shown in Fig. 12. The \(\tilde{\text{Cop}}_{FP} \) errors decreased to less than 4.6% after the correction.

![Corrected center of pressure: right foot](image)

6. Conclusion

In this research, we developed an M3D system, which is a walking analysis system that consists of mobile force plates and motion sensors. We conducted two experiments to compare our M3D system with a conventional 3D motion analysis system for evaluation. Based on this research, we obtained the following conclusions:

1) In comparison with the conventional motion analysis system, M3D system is able to measure the ground reaction force with an error of less than 1.3%.

2) In comparison with the conventional motion analysis system, M3D system is able to measure the center of pressure with an error of less than 4.6%.

3) By using the M3D system, we were able to measure the attitude of the lower limbs during walking.
Acknowledgment

This work was partially supported by Grant-in-Aid for Scientific Research (A) (23246041), Japan Society for the Promotion of Science.

References

