Study on adhesion of dental cements using a primer with a phosphoryl group to zirconia ceramics

Sachie Ikoma, Shigeaki Kurata and Kozo Umemoto

Keywords: Zirconia. Bond strength. Cement. Surface treatment. Primer

To evaluate properties to bond to zirconia, four commercial resin cements, four resin-modified glass ionomer cements, conventional glass ionomer cement, and four primers were used. Furthermore, the relation between the compressive strength and tensile bond strength was examined.

The tensile bond strength of one resin cement without a primer to the zirconia after 2,000 thermocycles was about 7.5 MPa, while the metal tab came off from the zirconia surface during thermocycles when the other resin cements were used. The bond strength to zirconia treated with the four primers was improved, but became almost zero after 5,000 thermocycles. The bond strength of two resin-modified glass ionomer cements markedly decreased, but that of one resin-modified cements did not significantly change after 5,000 thermocycles. A correlation between the compressive strength and tensile bond strength of each cement was not identified.
緒 言

CAD/CAMの技術進歩1, 审美性の追求、金属アレルギーなど様々な社会的背景から、セラミックス材料が注目され2-4, 最近ではクラウンだけでなく、ブリッジにもセラミックスが臨床応用されている5-7。特に、高強度のジルコニア系セラミックス（以下ジルコニアと略す）をコアとした場合、セラミックス製ブリッジの破折や脱落防止のためには、接着性材料が必要である。また、審美性のある補腫物を製作するには、セラミックス上にポーセレイトもしくは硬質レジンを築盛しなければならない8。著者らは技工操作や経済性および修理の容易性などの点から、硬質レジンの使用がよいと考えている。この場合にもレジンとジルコニアコアとの間には接着性が不可欠である。

ジルコニアを主体とするセラミックスとレジンとの接着では、ジルコニウムとリン酸との結合性は比較的安定と考えられ9-10, リン酸塩を含有する接着機能性モノマーをもつ接着材が有効と考えられる。これまでも各種機能性モノマーを含む市販プライマーおよびシランカップリング剤が単独あるいは併用され、歯科用セメントとジルコニアとの接着強さが検討されている11-16。しかしながら、サンドブラストなどのメカニカル処理によるジルコニアの表面粗さの差により、それら表面処理材料の効果については必ずしも明確にされていない。また、各接着材のジルコニア接着に対する接着性プライマーの官能基の種類とその効果やジルコニアの表面粗さの影響についても不明な点が多い。

本研究では、ジルコニアに対し化学的結合をもつプライマーを目的に、その使用として、リン酸基を有する接着機能性モノマーをプライマーとしたパナイア F2.0を用い、ジルコニアに対する接着性を検討した。また、ジルコニアに対する接着プライマーの官能基の効果や硬度反応の違いによる影響が明確にされていないため、他のレジンセメントおよび歯科用接着材や合着材を用いて比較検討を行った。

材料および方法

1. 材料

本研究に用いた接着材の種類と比較材料の略号および商品名を表1、またプライマーの種類および組成を表2に示す。すなわち、レジン接着材は、maxcem（Kerr）、パナイア F2.0（クラレメディカル）、トクヤマオノライト（トクヤマデンタル）, G-CEM（ジーシー）の4種を、レジン添加型グラスアイオノマーせメントは、ハイボンドレジグラス（松風）、ピトレマー（3M ESPE）、フジリュート（ジーシー）、クシーノセムプラス（デンツプライ三金）の4種を用いた。さらに比較材として、従来型グラスアイオノマーセメントのハイボンドグラスアイオノマー-CX（松風）およびコンポジットレジンのクリアフィル FⅡ（クラレメディカル）を用いた。プライマーとしては、市販の EDプライマーⅡ（クラレ

<p>| 表1 種々の接着材および比較として用いた材料 |</p>
<table>
<thead>
<tr>
<th>分類</th>
<th>商品名</th>
<th>Lot No.</th>
<th>製造者</th>
<th>略号</th>
</tr>
</thead>
<tbody>
<tr>
<td>レジンセメント</td>
<td>maxcem</td>
<td>433030</td>
<td>Kerr</td>
<td>MAX</td>
</tr>
<tr>
<td></td>
<td>パナイア F2.0</td>
<td>Paste A: 00193A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Paste B: 00030A</td>
<td>クラレメディカル</td>
<td>PVA</td>
</tr>
<tr>
<td></td>
<td>トクヤマオノライトF</td>
<td>Powder: 249</td>
<td>トクヤマデンタル</td>
<td>TII</td>
</tr>
<tr>
<td></td>
<td>G-CEM</td>
<td>Powder: 0802221</td>
<td>ジーシー</td>
<td>GCM</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid: 0802211</td>
<td></td>
<td></td>
</tr>
<tr>
<td>レジン添加型グラスアイオノマー</td>
<td>ハイボンドレジグラス</td>
<td>Powder: 110721</td>
<td>松風</td>
<td>HBR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid: 120796</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ピトレマー</td>
<td>Powder: 8PF</td>
<td>3M ESPE</td>
<td>VTR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid: 8TN</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>フジリュート</td>
<td>Powder: 0607181</td>
<td>ジーシー</td>
<td>FJL</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid: 0607101</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>クシーノセムプラス</td>
<td>Powder: 410-127</td>
<td>ケンツプライ三金</td>
<td>XCP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid: 410-732</td>
<td></td>
<td></td>
</tr>
<tr>
<td>比較材料</td>
<td>クリアフィルFⅡニューボンド</td>
<td>Universal: 01699A</td>
<td>クラレメディカル</td>
<td>CF II</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Catalyst: 01599A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ハイボンドグラスアイオノマー CX</td>
<td>Powder: 120473</td>
<td>松風</td>
<td>HBG</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Liquid: 010528</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
メイドル), クリアフィルメガボンドプライマーとクリアフィルポーセレンボンドアクティベーターの混合物（クラレメディカル）、クリアフィルセラミックプライマー（クラレメディカル）, また, 市販品以外のプライマーとして3-メタクリロキシプロピルトリメチルシラーン（3-MPS: KB503, 信越化学）を使用した。
また, ジルコニア被着体は, サルコンベース（テーププライ三金）を焼結した直径6 mm, 高さ3 mmの円柱を用いた。本品の組成は, 酸化ジルコニア89.2%, 酸化イットリウム5.0%, 酸化ハフニウム5.0%, その他0.8%である。

2. 引張接着強さ

1) 接着試料作製と試験条件

被着体ジルコニアをガラス上に置き, さらに内径20 mm, 高さ10 mmの二分割可能な金属製円筒モールドで囲み, 常温重合レジン（トレーレジンII, 松風）、の両側に埋め込み, 常温で硬化後, モールドを外した。ジルコニア表面に耐水ペーパー400番から1,200番まで流水下で研磨後, 1,000番にて研磨し, 接着面とした。これらは, 超音波洗浄機でイオン交換水を用い2分間洗浄後, セリプレーワイシンジで洗浄, エアー乾燥を行った。

メーカー指示に従いプライマーにて表面処理したジルコニア面ならびに表面処理を行わない面に対し, 直径2 mm, 厚さ0.06 mmの接着テープ（スコッチメジンデントテープ, 3M）を貼付し接着面積を規定した。ついて, 接着面をメッシュ加工した直径5 mmの金属接着子（ボンディングテストバー, Tomy International）に, メーカーの指示にて練和した各種接着剤を塗布し, 上記の接着テープで規定した面に対し, 手圧にて突き合わせ接着を行った（図1）。

各試料は, 接着後30分室温大気中に放置し, ついで37℃水中2日浸漬後, 5℃および55℃の溶槽に各30秒間浸漬し, 各槽の移動時間6秒間とし, 2,000時間あるいは5,000回のサマルサイクル負荷を与えた。

2) 引張接着試験

各保管後の, 先に述べた方法（オートグラフ AGS-500, 立津製作所）を用い, クロスヘッドスピード1.0 mm/minで引張接着試験を行い, 接着強さを求めた。なお, 試験数は, 各条件について5個としジルコニア破壊面を観察した。

3. 壓縮強さ

1) 試料作製と試験条件

直径4 mm, 深さ8 mmの穴を開けたテフロン型に練和した各種接着剤を充填し, 室温湿式箱中に30分間保し硬化させた。次に4,750 kgf/m²の圧縮力とし, 37℃水中2日浸漬後, 引張接着試験と同様の方法にて2,000回のサマルサイクル負荷を与えた。

2) 壓縮試験

各試料は, 前述の圧縮試験を用い, クロスヘッドスピード2.0 mm/mmで圧縮試験を行った。なお, 試験数は, 各条件について各8個とした。

4. 統計処理

実験によって得られた値は, それぞれの平均値および標準偏差を求め, 一元配置分散分析（Student-
The Japanese Society for Dental Materials and Devices (JSDMD)

ジルコニア系セラミックス材料の接着

Newman-Keuls 多重比較を行い、危険率 5%未満でデータ間の差の検定を行った。

結 果

1. ブライマー処理による各種レジンセメントのジルコニアに対する引張接着強さ

ブラインマー処理による各種レジンセメントの引張接着強さおよびジルコニアの破断面の破壊様式を表 3 に示す。水中 2 日浸漬後、PVA の接着強さは 21.7 MPa を示し、破断面はすべて混合破壊であった。MAX および GCM は、それぞれ 19.4 および 20.5 MPa を示し、PVA と差がなく (p > 0.05)、破断面は MAX がほとんど界面破壊、GCM がすべて凝集破壊であった。TTT は 3.7 MPa で、他の 3 つに比べ有意に低い値を示した (p < 0.05)。
2,000 回サーマル負荷後、PVA、MAX および TTT では、サーマル負荷中に接着子が脱落し、いずれも界面破壊がほとんどであった。

GCM は 7.5 MPa で、水中 2 日浸漬と比べ有意に低下 (p < 0.05)、破断面は凝集と界面破壊であった。5,000 回サーマル負荷後、GCM は 2.6 MPa を示し、ほとんどが界面破壊であった。比較であるコンポジットレジンの CFII は、水中 2 日浸漬で 6.7 MPa、2,000 回サーマル負荷後では接着子が脱落し、すべて界面破壊であった。

2. 各種ブラインマー処理したジルコニアに対する PVA の引張接着強さ

種々のブラインマーをジルコニアを処理し PVA で接着した。PVA の接着強さおよびジルコニア側の破断面の破壊様式を表 4 に示す。ED ブライマー I およびクリアフィルセラミックで表面処理した接着強さは、水中 2 日浸漬で各々 27.5 MPa と 20.2 MPa を示し、ブラインマー未処理との有意差は認められない (p > 0.05)。それらの破断面は凝集破壊と混合破壊が主であった。しかし、2,000 回サーマル負荷後、ED ブライマー II およびクリアフィルセラミックで、2.1 および 8.5 MPa に低下 (p < 0.05)、破断面は ED ブライマー II がすべて界面破壊。クリアフィルセラミックがすべて混合破壊であった。
5,000 回サーマル負荷後、クリアフィルセラミックの接着強さは、0.4 MPa に低下、破断面はすべて界面破壊であった。ED ブライマー II は、5,000 回サーマル負荷後にはすべて接着子が脱落し、破断面はすべて界面破壊であった。クリアフィルセラミックブライマーと 3-MPS で表面処理したジルコニアの接着強さは、水中 2 日浸漬でそれぞれ 10.7 MPa、15.6 MPa を示し、破断面はすべて混合破壊であった。しかし、2,000 回サーマル負荷後、新たな接着強さは、それぞれ 5.7 MPa、4.6 MPa に低下し (p < 0.05)、破断面もほとんど界面破壊であった。

3. 種々のレジン添加型グラスアイオノマーセメントの引張接着強さ

種々のレジン添加型グラスアイオノマーセメントおよび比較として用いたセラミックアゼオマーセメントの引張接着強さおよびジルコニアの破断面の破壊様式を表 5 に示す。水中 2 日浸漬後、HBR、VTR および FJL の接着強さは、それぞれ 12.6、11.3 および 10.7 MPa の値を示し、3 種間に差はなく (p > 0.05)、破断面はすべて凝集破壊であった。2,000 回サーマル負荷後、HBR は、11.0 MPa の値を示し、接着強さは低下せず (p > 0.05)、VTR は 5.6 MPa、FJL は 0.7 MPa となり接着強さは低下した (p < 0.05)。破断面は、HBR と VTR はすべて凝集破壊であったが、FJL はほとんど界面破壊であった。
5,000 回サーマル負荷後、HBR は 9.2 MPa の値を示し、すべて凝集破壊であった。VTR で 2.6 MPa の値を示し、破断面すべて凝集破壊であった。FJL は接着子が脱落し、すべて界面破壊であった。
一方、比較として用いた HBG の接着強さは、水中 2 日浸漬後で 3.1 MPa を示し、破断面はほとんど凝集破壊であった。2,000 回サーマル負荷後、接着子はすべて脱落し、破断面はすべて凝集破壊であった。

4. ブライマーの違いによる HBR の引張接着強さ

レジン添加型グラスアイオノマーセメントのうち HBR が、他のセメントに比べ高い耐久性を示したので、HBR についてブラインマー塗布を検討した。クリアフィルセラミックおよび 3-MPS をブラインマーとして用いた HBR の引張接着強さおよびジルコニア側の破断面の破壊様式を表 6 に示す。クリアフィルセラミックプライマーで表面処理したジルコニアの接着強さは、水中 2 日浸漬後で 2.6 MPa を示し、破断面はほとんど界面破壊であった。2,000 回サーマル負荷後では、すべての接着子が脱落し、破断面はすべて界面破壊であった。
3-MPS で表面処理をした HBR の接着強さは、水中 2 日浸漬後で 13.3 MPa を示し、未処理に比べると有意差がある (p < 0.05)、破断面は混合破壊と凝集破壊であった。2,000 回および 5,000 回サーマル負荷後では、その 9.1 および 5.2 MPa と強さは低下し (p < 0.05)、破断面はすべて凝集破壊であった。

5. 各セメントの圧縮強さ

各レジン添加型グラスアイオノマーセメントおよびレジンセメントの圧縮強さを図 2 に示す。水中 2 日浸漬後、各セメントの圧縮強さは、レジンセメントの TTT を除き、概ね来型グラスアイオノマーセメント (HSG: 73 MPa) < レジン添加型グラスアイオノマーセメント (VTR: 78, XCP と FJL: 92, HBR: 103MPa)
表3 プライマー未処理による各種セメントのジルコニアに対する引張接着強さ

<table>
<thead>
<tr>
<th></th>
<th>水中2日</th>
<th>2000回</th>
<th>5000回</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/M/C²</td>
<td>I/M/C²</td>
<td>I/M/C²</td>
<td></td>
</tr>
<tr>
<td>MAX</td>
<td>19.4 (8.5) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>PVA</td>
<td>21.7 (6.8) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>TIT</td>
<td>3.7 (2.1) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>GCM</td>
<td>20.5 (5.1) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>CFII</td>
<td>6.7 (5.8) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
</tbody>
</table>

MPa (SD), n＝5, ×：各破壊数の数, 1（界面破壊）/M（混合破壊）/C（セメントの凝集破壊）
×[§]：サーマル負荷中にすべて脱離
-^α：2,000回のサーマルサイクル負荷ですべて脱離したので実験せず。
上記のアルファベットは、各内の数値間の有意差を、下記のカタカナは、各内の数値間の有意差を表し、同じ文字は有意差がないことを表す（p>0.05）。

表4 プライマーの違いによるPVAの引張接着強さ

<table>
<thead>
<tr>
<th></th>
<th>水中2日</th>
<th>2000回</th>
<th>5000回</th>
</tr>
</thead>
<tbody>
<tr>
<td>I/M/C²</td>
<td>I/M/C²</td>
<td>I/M/C²</td>
<td></td>
</tr>
<tr>
<td>未処理</td>
<td>21.7 (6.8) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>ED</td>
<td>27.5 (8.9) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>クリアルフィル</td>
<td>20.2 (11.9) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>メガポリス</td>
<td>10.7 (8.7) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
<tr>
<td>3-MPS</td>
<td>15.6 (5.1) <sup>σ</sup></td>
<td>×<sup>§</sup></td>
<td>-<sup>α</sup></td>
</tr>
</tbody>
</table>

MPa (SD), n＝5, ×：各破壊数の数, 1（界面破壊）/M（混合破壊）/C（セメントの凝集破壊）
×[§]：サーマル負荷中にすべて脱離
-^α：2,000回ですべて脱離したので実験せず。
上記のアルファベットは、各内の数値間の有意差を、下記のカタカナは、各内の数値間の有意差を表し、同じ文字は有意差がないことを表す（p>0.05）。
図2 集合のレジン添加型グラスアイノマーおよびレジンセメントの圧縮強さ

図中のアルファベットは水中2日、カタカナは2,000回サーマル負荷後の各セメント間の強さの有意差を表す。同じ文字に有意差はない（p>0.05）。*は水中2日と2,000回サーマル負荷後間の有意差を示す。

図3 集合の水中2日後の圧縮強さと引張接着強さの関係

□：レジン添加型グラスアイノマー・セメント
▲：レジンセメント

レジンセメント（HSG：102，PVA：129，GCM：136，MAX：191 MPa）の順であった。TTTはレジン添加型グラスアイノマー・セメントと有意差はなかった（p>0.05）。2,000回サーマル負荷後、レジン添加型グラスアイノマー・セメントのVTRおよびXCPは、従来型グラスアイノマー・セメントのHBGと、TTTはレジン添加型グラスアイノマー・セメントと有意差はなかった（p>0.05）。また、2,000回サーマル負荷により、HBG、HBR、FIL、GCMおよびPVAの圧縮強さは、37℃水中2日浸漬後に比べ、有意に高い値を示した（p<0.05）。

6. 各セメントの圧縮強さと引張接着強さの関係

各セメントの水中2日浸漬後における圧縮強さと引張接着強さの関係図3に示す。図では、圧縮強さと引張接着強さの間で正の相関を示したが、自由度を考慮した決定係数は0.338であった。引張接着強さと圧縮強さとの相関は有意ではなかった。

考察

ジルコニアを歯冠被覆物のフレーム材料として用いた場合、密密性の要求から陶材もしくは硬質レジンなどの接着が必要になる。そのため、ジルコニア表面に対し、サンドブラスト、ロカネット、フッ酸などの多くの処理が行われ、接着性が検討されている11-15,17-19。本研究では、ジルコニアに対する化学的接着性を評価するために、サンドブラストなどの処理は行わなかった。また、総而言及すべきように、ジルコニアに対する接着性機能基としてはリン酸基が有効と考え、リン酸基含有モノマーを有するレジンセメントに着目し検討した。また、機能基のほか硬化反応の影響も考慮し、レジン添加型グ
ラスアイオノマーセメントも検討した。さらに、レジン添加型グラスアイオノマーセメントのHBRの接着強さが低い結果が得られた。HBRの硬化反応が重合反応と塩の形成反応であるので、その比較として、硬化が塩形成反応のみのグラスアイオノマーセメントおよび重合反応のみのコンポジットレジンを用いた。

1. ブライマー未処理による各種レジンセメントのジルコニアに対する引張接着強さ

TTTを除く3種のレジンセメントMAX、PVAおよびGCMの水中2日浸漬後の接着強さは、約20MPaと高い値を示したが、2,000回サーマル負荷後、GCMを除くすべてのセメントで接着子が脱離した。5,000回サーマル負荷後のGCMの接着強さは、2.6MPaとなった。今回用いたいずれのレジンセメントもブライマー処理なしでは、ジルコニアに対し、初期（水中2日浸漬）の接着性は認められるものの、接着耐久性はなかった。ジルコニアに対するレジン接着には、ブライマー処理は不可欠と考えられる。

2. 各種ブライマー処理したジルコニアに対するPVAの引張接着強さ

本研究では、ジルコニアに対しリン酸含有ブライマーが効果的と考えたこと、またリン酸含有ブライマーを提供しているのがクラレメディカル社製であるので、レジン接着剤としてPVAを選び検討した。なお、市販のブライマー以外にシリカ系剤のブライマーとし、使われている3-MPSについても効果を調べた。各種ブライマー処理したPVAの場合、水中2日後の接着強さは、EDブライマーIIおよびクリアフィルメガボンド処理では、未処理と有意差はなく、セラミックブライマーおよび3-MPS処理では、逆に未処理に比べ強度は低下した。2,000回サーマル負荷後、未処理は接着子が脱離したが、クリアフィルメガボンド処理では約2MPaとなり、未処理に比べ耐久性が認められた。EDブライマーIIおよびセラミックブライマーならびに3-MPS処理の強さは、約2～6MPaとなり、水中2日浸漬に比べ強度は大きく低下した。5,000回サーマル負荷後、クリアフィルメガボンドおよびセラミックブライマー処理の接着強さはほぼゼロとなり、ほとんど界面破壊となった。また、EDブライマーIIおよび3-MPS処理では、接着子が脱離し、接着強さの値は得られなかった。

本実験の4種のブライマー処理したジルコニア表面にPVAを接着した場合、未処理と同様あるいは未処理に比べ低い接着強さを示し、処理による接着強さの向上は認められなかった。1,000番で研磨したジルコニア表面に対するリン酸含有ブライマーならびにシリカ系の表面処理剤である3-MPSの処理はジルコニアに有効ではなかった。ブライマー処理の前処理として、サンドブラストなどのようなメカニカルな表面処理をする必要があると考えられる。

シランカップリング剤の効果について、佐藤ら23でもジルコニア／アルミナ／ナノ複合材料においてもシランカップリング剤の効果は期待できないと報告している。高桑ら24は、ジルコニア／アルミナ複合セラミックスをシランカップリング処理し、レジンセメントの接着強さを検討し、無処理およびシラン処理のみでは、サーマルサイクル負荷後、いずれのセメントにおいても強度は大きく低下すると報告している。シラン処理すると強さが低下する報告25もある。一方、サンドブラスト処理した面でシラン処理すると高い接着強さが得られるとの報告26もあり、シラン処理の効果よりもジルコニア表面の粗さが接着強さに大きく関与していると考えられる。

3. 種々のレジン添加型グラスアイオノマーセメントの引張接着強さ

本研究で用いたレジン系セメントでは、ブライマー処理の有無にかかわらずジルコニアに対し良好な接着強さが得られなかったので、各種レジン添加型グラスアイオノマーセメントにおけるジルコニアに対する接着を評価した。5,000回サーマル負荷後、FILは接着子が脱離し、VTRおよびXCPでは、接着強さは大きく減少し、接着していなかった。一方、HBRは、5,000回サーマル負荷後も92MPaの値を示し、初期（水中2日浸漬）の強さと有意差はなく、ジルコニアに対し接着性を示した。このように類似の組成をもつと思われるレジン添加型グラスアイオノマーセメントでもジルコニアに対する接着性は異なっていた。硬化させたレジン添加型グラスアイオノマーセメントの吸水は、水中浸漬とともに比較的速やかに進行することから27、28、セメントに添加されたレジンモノマーの酸化性のバランスは、水中（環境）におけるセメントの接着強さの耐久性に大きく影響すると考えられる。一方、従来型グラスアイオノマーセメントであるHGBの接着強さの低いものの、2,000回サーマル負荷後もすべてセメントの凝聚破壊を示すことから、ジルコニアに対しカーボキシル基は多少作用していると考えられる。また、レジン添加型グラスアイオノマーセメントHBRの硬化反応である酸塩基反応とラジカル反応との優先順位が接着強さに影響することも考えられる。たとえば、レジンの硬化反応が酸塩基の反応に比べ急激に進行した場合、酸塩基の硬化が妨げられ、未反応のカルボキシル基が生じやすくなり、材料の吸水性も増し、接着界面における耐水性に悪影響を及ぼすと考えられる。このHBRのジルコニアに対する接着性については、硬化反応である酸塩基反応とラジカル重合反応の過程を検討中である29、30。
4. ブライマーの違いによる HBR の引張接着強さ

レジン添加型グラスアイノマー-セメントの HBR の場合、5,000 回サーマル負荷後も 9.2 MPa の値を示した。
HBR とジルコニアとの接着力の向上を期待し、各ブラインマー処理したジルコニアに対する HBR の接着力を検討した（表 6）。セラミックスブラインマー処理した HBR の接着力は 2.6 MPa となり、未処理の 12.6 MPa
に比べ大きく減少した。また、破断面は界面破壊がほとんどであり、本ブラインマー処理は無効であった。一方、ジルコニアを 3-MPS で処理すると 5,000 回サーマル負荷後も 5.2 MPa となり、初期（水中 2 日浸漬）の接着力は有意差は認められず、すべて接着材の凝集破壊であって、HBR と 3-MPS の組み合わせは 5,000 回サーマル負荷後も接着子が脱落せず、わずかな耐久性が認められた理由は、3-MPS の加水分解により生成したシラン
ル基とジルコニア表面の水酸基との水素結合、あるいは塗布した 3-MPS がジルコニア表面の微細な隙間に入り、レジンのねれを向上したことにより、接着力は低下しなかったと考えられる。

5. 各セメントの圧縮強さと引張接着強さとの関係

本研究に用いたセメントの圧縮強さは、一部のセメ
ותを除き、概ね従来型グラスアイノマー-レジン添加
型グラスアイノマー-セメントの順であった。また、2,000 回サーマル負荷により、HBG、HBR、FJL、GCM および PVA の圧縮強さは、37℃水中 2 日浸漬に比べ強度が向上した (p<0.05)。また、各セメントの接着強さと圧縮強さとの相関性は低いことから（図 3）、接
着材マトリックスの強さだけでなく、ジルコニアに有効なブラインマーの開発が必要であると考えている。

ジルコニア表面を様々なサンドブラストで処理し、接
着機能性モナーである 10-メチルクロリルオキサイデン
ジハイドロゲレン-ホスフェートを含んだセメントを
用い接着力を検討した研究では、種々の表面処理によ
る接着力に有意差はないという報告もあるる。各セメ
メントのジルコニアに対する接着は、セメントの強さより
は、レジン系セメントにおける材料の粘性、使用したレジンモナーの粘性やねれの良さなどの影響が大きいと考えられる。

結 論

市販の 4 種類のレジンセメント、4 種類のレジン添加型グラスアイノマー-セメントを用い、ジルコニア表面を各種ブラインマーで処理し、処理効果や接着強さを検討し、以下の結論を得た。
1. ブライマー未処理による 4 種類のレジンセメントのジルコニアに対する接着では、MAX、PVA および GCM の初期（水中 2 日浸漬）の接着強さは、それぞれ 19.4、21.7 および 20.5 MPa であったが、2,000 回サーマル負荷後、GCM では 7.5 MPa となり、MAX、PVA、TTT および CF II では接着子が脱落した。5,000 回サーマル負荷後、GCM は 2.6 MPa となり、強さは大きく減少した。
2. 4 種類のブラインマーで処理したジルコニアに対する
PVA の接着では ED ブライマー II およびクリアフィ
ルメガボンド処理した面における水中 2 日浸漬後の接着強さは、それぞれ 27.5 および 20.2 MPa となり、未処理の 21.7 MPa と有意差はなかった。5,000 回サーマル負荷後は、ED ブライマー II および 3-MPS では接着子が脱落し、GCM グラスメガボンドおよびセラミックスブラインマ
ーではほとんどゼロとなった。
3. レジン添加型グラスアイノマー-セメントの接着で
は、HBR、VTR、および FJL の水中 2 日浸漬後の接着強さは、12.6、11.3 および 10.7 MPa で、レジンセメントの約半分の値であった。5,000 回サーマル負荷後、HBR は水中 2 日浸漬後の強さと有意差はなかったが、FJL は接着子が脱落し、VTR および XCP の接着強さは、それぞれ 2.6 および 0.2 MPa となった。
4. 圧縮強さと引張接着強さとの間で正の相関を示し
たが、その決定係数は 0.338 であり、引張接着強さと圧
縮強さとの相関性は有意ではなかった。

以上のことより、ジルコニア表面を 1,000 面で研磨した面における歯科用セメントの接着では、リン酸基含有
ブラインマーの強さが 3-MPS の処理効果は得られなかった。ま
た、レジン添加型グラスアイノマー-セメント 4 種類の
内、HBR だけにセメントの接着が強度の接着耐久性が
認められたことから、ジルコニアに対する接着には、セ
メントの組成や硬化反応も影響すると考えられる。

文 献

1) 宮崎 隆、堀田康弘、オールセラミックス修復のために
知っておきたい CAD/CAM システムの概要、歯科評論
2007；67：65-72。
2) 小峰 一、審美修復材料としてのセラミックス“ジルコ
ニア”、QDT 2005；30：156-160。
3) 伴 清治、オールセラミックスレストレーションを実現する
ためのジルコニアの材料特性、歯科学報 2007；107：670-
683。
4) 伴 清治、進化の歩みから特性を知り、使いこなす
補材関連材料の今昔（第 1 回）ジルコニア-審美性と強度を
両立させる「白いメタル」＝QDT 2011；36：96-100。
5) 玉置芳雄、審美型萬修策材料としてのジルコニア（酸化ジ
ルコニア）の登場と特性——What's Zirconium-
oxide?”、歯科工技 2005；33：1011-1111。
6) 山崎長郎、ジルコニアが変わえるオールセラミックスレスト
レーション、歯科工技 2005；33：1112-1121。
7) 宮崎 隆、小倉英夫、石谷明喜、中村隆志、伴 清治、三
浦宏之ほか、CAD/CAM システムを用いたセラミック修

24. 山崎淳史, 日本野 哲, 原島 厚, 本多宗、長沢 慎, 尾松 純ほか. 合着用グラスアイオノマーセメントのせん断強さの経時的変化. 歯科誌 2006; 25: 54-61.
27. 倉田茂昭, 生鶴祥夫, 下山和夫, 桀木真之. ジルコニア系セラミックス材料の接着に関する研究（第5報）セメントの硬化度の解析. 日歯理工誌 2010; 29: 137.