Effects of long-term hemodialysis therapy on physical function in patients with chronic renal failure

Masakazu Saitho*1, Atsuhiiko Matsunaga*2, Misako Yokoyama*2, Michinari Fukuda*2, Atsushi Yoshida*3, Takashi Masuda*2
Departments of Angiology and Cardiology, Graduate School of Medical Sciences, Kitasato University*1; Department of Rehabilitation, School of Allied Health Sciences, Kitasato University*2; Sagamii Junkanji Clinic*3

Background: Advances in hemodialysis (HD) therapy and medical treatment have increased the life expectancy of patients with chronic renal failure, and attempt to enhance activities of daily living (ADL) and quality of life (QOL) with the prolongation of HD duration. Purpose: The present study investigated the relation between physical function and the duration of HD treatment in patients with chronic renal failure. Methods: Seventy-three patients with chronic renal failure (62±11 y) who have regularly received HD therapy entered
緒 言

近年の透析医療技術の進歩と全身管理の向上によって、血液透析患者の生命予後は著しく改善している。その結果、血液透析患者の高齢化や血液透析導入からの期間（透析期間）の長期化が進み、血液透析患者に対するリハビリテーションのアプローチはquality of life（QOL）や活動性の日常生活（ADL）への焦点が向けられるようになった。血液透析患者のQOLやADLの規定因子として、血液透析患者特有の痛み、痛み、疲れなどの症状ばかりではなく、日常的身体活動量やそれと相関する運動機能の低下が報告されている。とくに、運動機能低下は日常の身体活動の低下を招き、その低下がさらに運動機能低下を悪化させるとする悪循環を形成する。そのため、血液透析患者の運動耐容量や筋力は、同年代の健康成人の50～70％に低下しているばかりでなく、疲労などの自覚症状や栄養状態の悪化が運動機能の低下を促進すること、さらにアミロイド症や心疾患などの合併症が運動機能の低下をより悪化させることが知られている。このように、血液透析患者の運動機能は血液透析療法に伴うさまざまな要因によって低下するが、透析期間の長期化そのものが運動機能に与える影響については未だ一致した見解が得られていない。そこで、本研究は従来報告されている運動機能低下の因子を再評価し、多変量解析によって透析期間の長期化そのものが運動機能に及ぼす影響を明確にすることを目的とした。

I. 方 法

血液透析クリニックに週3回通院している血液透析患者191例のうち、本研究の主旨に対して同意が得られ、運動機能の測定が可能であった73例（男性19例、女性54例、平均年齢62±7歳）を対象とした。除外症例は、下肢切断や中枢神経疾患の症例、および下肢シャント症例とした。透析期間の長期化に伴う運動機能の変化を把握するために、73例の血液透析患者を透析期間によって3群に分類した。すなわち、透析期間が5年未満の患者をA群（男性8例、女性19例、平均年齢63±11歳）、5年以上15年未満のB群（男性6例、女性22例、平均年齢62±12歳）、15年以上をC群（男性3例、女性15例、平均年齢61±7歳）として、3群間で比較した。

測定項目は、患者背景因子として年齢、性別、体重、体格指数、透析期間、糖尿病あるいは心疾患の有無、手術症例（CTS）に対する手術の既往を診療録より調査した。腎性貧血の指標である血液ヘマトクリット値とヘモグロビン値、栄養状態の指標である清アルブミン値は1か月前の平均を解析値とした。血液透析療法に伴う症状の重症度の指標として、日本語版Kidney Disease Quality of Life Short Form（KDQOL-SF）を用いて、腎疾患患者の疾患特異的尺度の「症状」を調査した。「症状」は12の質問項目からなり、HD患者特有の症状についてそれぞれ5段階の重症度、すなわち「全く困らなかった」、「少し困った」、「困った」、「かなり困った」、「ひどく困った」で評価し、症状の程度を0～100点の範囲で点数化した。さらに、ADLの指標として健康関連QOLの下位尺度である身体機能（Physical Functioning；PF）を自己記入式で当てはめ、この下位尺度を0～100点に得点化して解析値とした。

運動機能

柔軟性の指標として、ベッド上背臥位で膝関節を伸展位に保持したまま股関節を他動的に屈曲して、挙上した下肢と水平面のなす角度（straight leg raising；SLR）を測定した。

バランスの指標として、functional reachを測定した。立位で片側の上肢を肩関節90°屈曲位に保持し、
図1 下肢筋力の測定
下肢筋力の測定方法（左図），Hand-held dynamometer（右図）

その中手指節関節の位置で測定開始位置として，片側
上肢をできるだけ前方に伸ばした時の中手指節関節の
移動距離を測定した．測定回数は2回とし，その最大
移動距離を解析値とした．

下肢筋力の指標として，Hand-held dynamometer
（μTas MT-1，ANIMA，東京）を用いて等尺性膝伸
展筋力を測定した．N-Kテーブルに座り膝関節90°屈
曲位を保ちHand-held dynamometerを下肢の内外
果の2個を前方に位置するようにN-Kテーブルの
アームに固定した（図1），5秒間の等尺性収縮を左右
3回ずつ行い，左右の最大筋力の平均値を体重で除し
た値（%BW）を解析値とした．

上肢筋力の指標として，デジタル握力計（グリップ
D，サンクレア，東京）を用いて握力を測定した．椅子
座位で肘関節を90°屈曲位に保持したまま，左右それぞれ
2回測定して左右の最大値の平均値を解析値とした．

歩行機能の指標として，10m最大歩行速度を用い
た，10m最大歩行速度は，10mをできるだけ速く歩行
した際の時間から歩行速度を算出した．測定回数は2
回とし，その最大速度を解析値として用いた．

身体活動量

この加速度計測装置付歩数計（Life Corder，
SUZUKEN，名古屋）を用いて，日常生活の身体活動
量（kcal/day）を調査した．起床時に付属のベルトで
歩数計を腰周に固定し，入浴時および就寝時以外の活
動時に装着した．1週間装着した後，1日のエネルギー
消費量を指標とした．体重および年齢から算出した基礎代
謝量に引いた値を身体活動量とし，週4日間の平均
身体活動量を解析値とした．（式1）

身体活動量（kcal/day）＝エネルギー消費量（kcal/
日）－基礎代謝量（kcal/day）……（式1）

II．統計学的解析

各運動機能の群間比較には，一元配置の分散分析を
行い，さらに目的変数を運動機能の各指標，説明変数
を透析期間，共変数を年齢，ヘマトクリット値，血清
アルブミン値，身体活動量および症状とした共分散分
析を行った．また，3群間の運動機能の各指標における
平均推定値の有意差検定にはBonferroni法を用い
た．共分散分析の妥当性の検討には，3群における各運
動機能と共変数の間でPearsonの相関係数を求めて，
共変数の採択の可否を決定した．採択された共変数が
複数であった場合，共変数間で多重共線性が認められ
るか否かをPearsonの相関係数を求めて検討した．また，
分散分析により回帰直線の平行性の検定を行い，運動機能と共変数との間に交互作用を認めるか否かを検討した．F分布検定を用いて回帰の有意性を
検出した．統計解析にはSPSS 11.0J（SPSS，Chicago, IL）を使用し，測定値はmean±SD
で表示して，有意水準は5%未満とした．

III．結果

臨床的患者背景因子を表1に示す．透析期間には各
群間で有意差を認めたが（それぞれp<0.05），年齢，
性別，dry weight，BMIおよび糖尿病の合併率には3
群間で有意差は認めなかった．心疾患の合併率はA群
にくらべてC群で有意に高く（p<0.05），CTSに対す
る手術の既往はA群にくらべてB群およびC群で有
表 1 臨床的患者背景因子

<table>
<thead>
<tr>
<th></th>
<th>A群（N=27）</th>
<th>B群（N=28）</th>
<th>C群（N=18）</th>
</tr>
</thead>
<tbody>
<tr>
<td>近期期間（年）</td>
<td>2.8±1.2</td>
<td>9.2±2.9*</td>
<td>21.1±4.5*</td>
</tr>
<tr>
<td>年齢（歳）</td>
<td>63.3±11.6</td>
<td>61.8±11.7</td>
<td>60.6±7.6</td>
</tr>
<tr>
<td>性別（男/女）</td>
<td>8/19</td>
<td>6/22</td>
<td>3/15</td>
</tr>
<tr>
<td>Dry weight (kg)</td>
<td>53.4±11.1</td>
<td>51.3±9.6</td>
<td>48.4±5.9</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>21.3±3.3</td>
<td>21.1±2.8</td>
<td>19.3±1.6</td>
</tr>
<tr>
<td>合併症 糖尿病</td>
<td>8 (27%)</td>
<td>8 (27%)</td>
<td>4 (21%)</td>
</tr>
<tr>
<td>心疾患</td>
<td>4 (14%)</td>
<td>8 (28%)</td>
<td>7 (37%)</td>
</tr>
<tr>
<td>CTS</td>
<td>0 (0%)</td>
<td>7 (24%)</td>
<td>9 (50%)</td>
</tr>
<tr>
<td>Ht (%)</td>
<td>30.1±2.7</td>
<td>30.4±1.9</td>
<td>29.5±2.5</td>
</tr>
<tr>
<td>Hb (g/dL)</td>
<td>9.9±0.8</td>
<td>9.9±0.7</td>
<td>9.6±0.8</td>
</tr>
<tr>
<td>Alb (g/dL)</td>
<td>3.9±0.3</td>
<td>3.9±0.5</td>
<td>3.8±0.2</td>
</tr>
<tr>
<td>症状（点）</td>
<td>78.7±13.6</td>
<td>79.8±13.9</td>
<td>78.4±11.1</td>
</tr>
<tr>
<td>ADL score (points)</td>
<td>44.7±11.1</td>
<td>42.3±12.7</td>
<td>37.4±16.3</td>
</tr>
<tr>
<td>SLR (degree)</td>
<td>68.3±10.1</td>
<td>68.5±10.9</td>
<td>66.1±9.1</td>
</tr>
<tr>
<td>Functional reach (cm)</td>
<td>29.3±7.9</td>
<td>29.1±6.9</td>
<td>27.5±7.1</td>
</tr>
<tr>
<td>下肢筋力 (%BW)</td>
<td>41.1±11.5</td>
<td>38.7±12.6</td>
<td>37.1±10.8</td>
</tr>
<tr>
<td>握力（kg）</td>
<td>26.4±9.1</td>
<td>18.1±5.3</td>
<td>12.2±6.5</td>
</tr>
<tr>
<td>最大歩行速度（cm/sec）</td>
<td>158.5±29.8</td>
<td>157±27.5</td>
<td>154±22.1</td>
</tr>
<tr>
<td>身体活動量（kcal/day）</td>
<td>75.5±48</td>
<td>81.3±47.1</td>
<td>78.2±65.1</td>
</tr>
</tbody>
</table>

mean±SD, *p<0.05 vs. A群, †p<0.05 vs. B群
BMI, body mass index; CTS, carpal tunnel syndrome; Ht, hemacrit; Hb, hemoglobin; Alb, albumin; ADL, activities of daily living; SLR, straight leg raising。

表 2 運動機能と共変量との関係

<table>
<thead>
<tr>
<th>年齢</th>
<th>身体活動量</th>
<th>症状</th>
<th>血清アルブミン</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR</td>
<td>-0.33*</td>
<td>0.41*</td>
<td>0.26</td>
</tr>
<tr>
<td>Functional reach</td>
<td>-0.41*</td>
<td>0.44*</td>
<td>0.21</td>
</tr>
<tr>
<td>下肢筋力</td>
<td>-0.42*</td>
<td>0.56*</td>
<td>0.24</td>
</tr>
<tr>
<td>握力</td>
<td>-0.28</td>
<td>0.18</td>
<td>0.12</td>
</tr>
<tr>
<td>10 m最大歩行速度</td>
<td>-0.58*</td>
<td>0.69*</td>
<td>0.39*</td>
</tr>
</tbody>
</table>

SLR, straight leg raising; *p<0.05

意に高値を示した（p<0.05 および p<0.05）。握力以外の運動機能は 3 群間に有意差を認めなかったが、握力は C 群が A 群にくらべて有意に低値を示した（p<0.05）。

運動機能の各指標と共変量の関係を表 2 に示す。共分散分析の実施に際して、共変量の妥当性を検定するため年齢と身体活動量は握力以外の運動機能に対して有意な相関を示した（p<0.05）。症状に関しては、10 m 最大歩行速度との間に有意な相関を示した（p<0.05）。また、血清アルブミン値は下肢筋力および 10 m 最大歩行速度との間に有意な相関を示した（p<0.05 および p<0.05）。本研究では、握力を除く運動機能において有意な相関を認めた年齢と身体活動量を共変量として採択した。一方、握力に関しては、有意な共変量を認めなかったことから透析期間の長期化との関係を検討する際に、年齢や身体活動量の影響を調整する必要がないことが示された。

図 2 年齢と身体活動量との関係
透析期間＜5年（△）、5年≦透析期間＜15年（■）、15年≦透析期間（▲）

各群の年齢と身体活動量の関係を図 2 に示す。年齢と身体活動量との間には、3 群ともに有意な相関は示さず、年齢と身体活動量の間に多重共線性は認めないことが示された。
表 4 運動機能と共変量における回帰の有効性の検討

<table>
<thead>
<tr>
<th>共変量</th>
<th>B 値</th>
<th>標準誤差</th>
<th>t 値</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR</td>
<td>-2.59</td>
<td>0.09</td>
<td>-2.81</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.02</td>
<td>2.57</td>
<td><0.01</td>
</tr>
<tr>
<td>Functional reach</td>
<td>-0.27</td>
<td>0.14</td>
<td>1.99</td>
<td><0.05</td>
</tr>
<tr>
<td></td>
<td>0.07</td>
<td>0.03</td>
<td>2.54</td>
<td><0.05</td>
</tr>
<tr>
<td>下肢筋力</td>
<td>-0.24</td>
<td>0.09</td>
<td>-2.76</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>0.04</td>
<td>0.02</td>
<td>2.32</td>
<td><0.05</td>
</tr>
<tr>
<td>10 m 最大歩行速度</td>
<td>-1.27</td>
<td>0.28</td>
<td>-4.58</td>
<td><0.01</td>
</tr>
<tr>
<td></td>
<td>0.31</td>
<td>0.06</td>
<td>5.31</td>
<td><0.01</td>
</tr>
</tbody>
</table>

SLR, straight leg raising

表 5 運動機能の平均推定値の比較

<table>
<thead>
<tr>
<th></th>
<th>A 群</th>
<th>B 群</th>
<th>C 群</th>
</tr>
</thead>
<tbody>
<tr>
<td>SLR (degree)</td>
<td>69.8±1.8</td>
<td>68.5±1.8</td>
<td>63.1±2.3</td>
</tr>
<tr>
<td>Functional reach (cm)</td>
<td>29.6±1.5</td>
<td>28.6±1.4</td>
<td>25.8±1.9</td>
</tr>
<tr>
<td>下肢筋力 (%BW)</td>
<td>41.1±2.2</td>
<td>39.4±2.1</td>
<td>35.3±2.8</td>
</tr>
<tr>
<td>10 m 最大歩行速度 (cm/sec)</td>
<td>151.7±4.4</td>
<td>151.2±4.5</td>
<td>132.5±5.9</td>
</tr>
</tbody>
</table>

mean±SD, * p<0.05 vs. A 群; † p<0.05 vs. B 群
SLR, straight leg raising

あることが示された。
各運動機能と年齢および身体活動量における回帰直線の平行性の検定を表3に示す。運動機能のいずれの指標においても交互作用は認められず、共変量の値にかかわらず3群の回帰直線は平行であることが示された。
各運動機能と年齢および身体活動量における回帰の有効性の検定を表4に示す。運動機能のいずれの指標においても傾きが0ではないことが示され、回帰直線である年齢および身体活動量の影響を考慮したうえで、運動機能と透析期間との関係を解析することの妥当性が示された。
各運動機能の平均推定値の比較を表5に示す。SLR、functional reachおよび下肢筋力には3群間で有意差が認めなかった。10 m 最大歩行速度はC群がA群およびB群にくらべて有意に低値を示した（p<0.05およびp<0.05）。

IV. 考 察

本研究の対象患者は、ヘモグロビン値が3群ともに30％前後の値を示し、National Kidney Foundationや日本透析医学会が推奨している目標値を充分満足する患者であることから11,12,贫血によって日常生活の身体活動が制限されている可能性は少ないと考えられた。また、血清アルブミン値が3群ともに3.9 g/dL前後を示したことから、いずれの群においても栄養状態は良好に保たれていると思われた13,14。このように血液透析療法によって全身状態が安定し通院が可能な患者であっても、健康成人の運動機能と比較すると血液透析患者の柔軟性、筋力、バランス、歩行能力は同年代の健康者の7〜8 割に低下していた15-17,19-21。長期の透析期間が柔軟性、動的バランスおよび筋力などの運動機能に与える影響を多方面から解析した研究において、透析期間の長期化が運動機能低下の規定因子であることを実証した報告は極めて少ない18,19。一方で、血液透析患者の運動機能低下が、加齢、日常の
身体活動量、栄養状態および血液透析療法に伴う症状に関係するという研究は数多く報告されている。
このように、血液透析患者の運動機能低下はさまざまな因子が複合して惹起されるという考え方が主流であるが、長期の透析期間中のもののが直接的に運動機能低下を促進する因子かどうかは未だ明らかになっていない。

そこで、本研究において透析期間の長期化が運動機能の各指標に及ぼす影響を検討すると、透析期間の長期化に伴い握力のみが有意に低下することが示され、さらに握力以外の運動機能では共変量として年齢と身体活動量の因子が明らかとなった。すなわち、加齢とともに身体活動量低下が運動機能低下に影響するばかりでなく、透析期間の長期化そのものが運動機能の低下を惹起していることが示された。本研究の結果から透析期間と運動機能の関係をモデル化して図3に示す、加齢および身体活動量の低下によって運動機能は低下し、さらに年齢および身体活動量の要因を一定値に設定した場合、透析期間の長期化だけでは運動機能が低下することを表している。

本研究では、透析期間が15年以上に及ぶC群で、握力と歩行機能が他の2群より著しく低下し、その50%にCTSの手術の既往を認めた。すなわち、15年以上にわたる長期透析療法では、血液透析の副作用ともいえるアミロイド症が重症化し、患者の握力および歩行機能は強く障害されていた。一般に、血液透析患者は透析期間の長期化に伴いアミロイド症が重症化し、指や手関節の疼痛および関節可動域制限のためにADL障害を呈することが知られている。このADL障害は、さらに持続動作を含む上肢機能の低下を惹起するという悪循環を生じるため、年齢や身体活動量とは無関係に長期の血液透析によって上肢機能の指標である握力は著しく低下したと考えられた。また、アミロイド症は股関節や膝関節などの大関節にも多発性の病変を示し、下肢の関節痛や関節可動域制限を生じることから、これも直接的な歩行機能低下の原因となると思われた。健常高齢者を対象とした研究では、歩行機能は下肢筋力とバランス機能によって規定されると報告されている。本研究においても、年齢と身体活動量の因子を統計学的に補正すると、透析期間が15年以上に及ぶC群では、下肢筋力およびバランス機能が他の2群にくらべてそれぞれ10～15%低下し、これらの規定因子の低下が著しい歩行機能低下を惹起している原因と考えられた。

一方、Canadian Hemodialysis Morbidity Studyでは、透析期間が1年増加するたびに血液透析患者の10%が新たに心不全症状を呈することを明らかにした。本研究においても、透析期間の長期化に伴って心疾患の合併率がA群14%、B群28%、C群37%と増加し、長期の血液透析によって心機能は徐々に低下することが示され、Canadian Hemodialysis Morbidity Studyの報告を支持する所見が得られた。このように、透析期間の長期化に起因する合併症の発症は、骨関節障害に加え、心疾患をはじめとする内部障害にも認められている。しかし、われわれは合併症の重症度が透析期間とは独立して運動機能低下に関与していることを報告しており、透析期間の長期化に付随して増加する骨関節障害や内部障害などの合併を加え、運動機能に対する自己効力などの心理的な要因も透析期間の長期化に関与している可能性が推測される。今後も血液透析患者に対する効果的な運動療法を確立する上で、血液透析患者の運動機能低下に対する心理的な影響も併せて検討していく必要があると考えられる。

文献
1) 日本透析医学会統計調査委員会：わが国の慢性透析療法の現状（2004年12月31日現在）。透析会誌 39：1-23。2006
6) 伊東春樹、相沢博昭：透析患者の虚血性心疾患合併による運動制限、腎と透析 44: 653-657, 1998
9) 津山隆子、沖田 美、田添紀代子：透析療の長期化が運動機能におよぼす影響、理学療法探求 1: 2-7, 1998
12) 木村章彦、山口 昇：関節可動域測定法：可動域測定の手引き第2版、協同医書出版社、東京、2002
17) 細田多穂、柳沢 健：編集：理学療法ハンドブック第1巻 (改訂第3版). p 184-185, 協同医書出版社、東京、2000
18) 横山有里、長谷川爽美、松下和彦：慢性成人における等尺性膝伸筋筋力、理学療法学 29(Suppl 2): 342, 2002
20) 太田和夫、二瓶 宏、佐中 孝：至適透析をめざして：一步步すんだ透析治療. p 178-193, 中外医学社、東京、1995
23) 齊藤正和、坂本純子、松永英彦、増田 卓：血液透析患者の步行機能：Comorbidity indexの重複度における運動療法の効果. 体育科学 54(Suppl 2): 117, 2005