コンピュータプログラム学習のための
アルゴリズム自習システム VI
A Self-Learning System for Algorithm Focused on Studying Computer Programming

○佐藤 寛修*1 阿部 清彦*1 大山 実*2 大井 尚一*2
Hironobu SATOH, Kiyohiko ABE, Minoru OHYAMA and Shoichi OHI

キーワード：プログラミング学習、自習システム、フローチャート
Keywords: Studying programming, Self-learning system, Flowchart

1. はじめに
コンピュータプログラミングの学習において、講義を聴いても文書を読んでも、よくわからないという人がいる。このような人たのためには、コンピュータによる自習システムが開発されている[1][2]。筆者らは、アルゴリズムの組立て方を導えれば、それを記述する言語の学習は容易という経験から、アルゴリズムを中心に学習する自習システムを開発している[3]。

このシステムを授業の補助教材として使用しており、教員側からの要望と学習者の使用経験を収集して改良を加えている。2010年度は学外からのシステム利用を可能にし、文系に関する自習課題を追加した、この新しいシステムを公開し、学習者に対するアンケートにより評価を行ったので、結果と考察を述べる。

2. アルゴリズム自習システム
アルゴリズム自習システム（以降、本システムと呼ぶ）の基盤部分は、自習の進め方について記述した学習ガイド、システムの使用法とアルゴリズム構築の方法についてのFlashによるチュートリアル、そしてJavaアプレットとして動作しフローチャートによりアルゴリズムを学ぶ自習ツールからなる。図1に自習ツールの画面例を示す。自習の際には、図1中の中出題領域に示された課題について、学習者がそれを解決するためのアルゴリズムに対してフローチャートをパースごとに解答領域に配置し、処理内容を記述する。判定ボタンにより解答内容に応じて正否が判定される。

2009年度までに開発してきたシステム（以降、旧版と呼ぶ）では、自習ツールの出題形式として基礎的な入出力処理のみの課題から、条件分岐処理、繰り返し処理、配列変数を用いた処理まで、初学者に必要な内容を網羅していた[3]。旧版において、教員からの要望により、自習ツールの機能として文字型変数を利用可能にしたのので、2010年度にはアルゴリズム内で文字列を扱う具体的な方法が学べるよう自習課題を追加し、より広い範囲の学習を可能にした。なお、学習者が作成したフローチャートはインタプリクターにより実行でき、またC言語のソースプログラムへの変換も可能である。

旧版では授業や学内での自習に利用することを目指し、また学習履歴を保存する機能を開発した。その際、自習ツールとデータベース（以降、DBと略記する）との連携により機能を実現するよう設計し、学内にDB機能をもつシステムの専用サーバを設置した。このサーバーに各学習者が取り組んだ課題番号やその結果が記録され、課題の進度と習得状態を把握可能になった。

旧版は学内において広く利用可能であったが、著者のシステム設置環境では、セキュリティポリシーにおいて学外からのサーバ接続が一部で解禁されており、自宅などからは利用ができないかった。この制限に対し、学外での利用を可能にしてほしいとの要望が多く寄せられた[3]のため、2010年度はDBサービスで実現していた機能をPerl言語によるCGIスクリプトに置き換わり、学外からアクセス可能なWebサーバーホームページを設定可能にした。これにより、従来の機能を自宅などの学外からも利用可能になった。

*1関東学院大学工学部情報ネット・メディア工学科
*2東京電機大学情報環境学部情報環境学科

図1 自習ツールの画面例

---190---
3. 本システムについての評価

本システムを学内および学外での自習用として、関東学院大学工学部の学生に公開し、その1ヶ月後に評価アンケートを実施した。内容は、本システムの各機能に対する評価および自習課題の理解度についてである。なお、2009年度は課題を解かなかったという回答が多かったので、理由の記述欄に新たに設けた。有効回答数は29名、そのうち18名が本システムを利用した。以下の集計はシステム利用者を対象としている。

3-1. 本システムの機能および操作方法の評価

本システム使用後の印象について調査した。「学習ガイド」「チュートリアル」「自習課題」「フローチャート描画の操作性」「ユーザログインなどシステム全体の操作性」「学習履歴保存機能」「総合」の7項目に対し、それぞれ1から5を最低とし、5段階の評価を求めた。評価の集計結果（平均値）を表1に示す。

表1のとおり大きな偏りはなかったが、「学習履歴保存機能」への評価がやや低く、学習者は使い慣れたブラウザでシステムを利用していると推察できる。従来Flash内に表示していた学習履歴をHTMLページとして表示するよう変更したことから、他のWebページと同様に操作可能となり、良い評価を得たと考えられる。

一方、「フローチャート描画の操作性」の評価がやや低い。回答者は別の科目で図形描画機能をもつソフトウェアについて学習しており、本システムの描画機能との差異に対する適応感から、このように評価したと考えられる。したがって、描画ツールのユーザインタフェースを改善する必要がある。全体の評価は3.5以上であり、おおむね良好と考えている。

3-2. 学習者の理解度による評価

本システムによる学習内容別の理解度を調査した。ここで理解度の定義は、「理解できた」または「理解できなかった」という回答者のうち、前者の割合とした。集計結果を表2に示す。表2のとおり、「債の入出力」から「練習し」までの内容について、90%以上が理解できたと回答しており、学習の効果が認められる。また「配列」は60％、「文字列」は75％であった。母集団が異なるため単純な比較は難しいが、旧版に対するアンケートでは、「練習し」の理解度は60％、「配列」は20%程度であり[3]、いずれも向上がみられる。これは、前年度に2週間であった公開期間を、2010年度には1ヶ月間と設定したことにより、より多くの自習課題を解くことができ、理解が進んだと考えられる。

4. おわりに

本システムは、出題された課題に従ってフローチャートを組み立てることでアルゴリズムの組立て方を学習し、プログラミング技術を習得できることを目指している。システムについての評価アンケートを行ったところ、おおむね良好との結果が得られた。

今後は、公開する時期について十分な利用期間がとれるよう検討し、利用者がさらに効果的に学習できる運用を目指す。また、システムの利用状況などから学習効果について調査し、定量的な評価によって分析を行うことで、システムのさらなる増強を進めていく。

参考文献