工学的技術を活用した果樹栽培支援システムの提案

A Proposal for Fruit Cultivation Support System Utilizing Engineering Technology

○小林 洋貴※1 芦田 和毅※2 藤澤 義範※2 山下 一樹※3
Hiroki KOBAYASHI Kazuki ASHIDA Yoshinori FUJISAWA Kazuki YAMASHITA

キーワード：農工連携，ICT，クライアントサーバモデル
Keywords: Agriculture and Industry Cooperation, Information and Communication Technology, Client-server Model

1. はじめに
これまで、リンゴの出荷・品質および樹を遠隔からリアルタイムに管理するWebベースのシステムを構築してきた。本稿では、より容易に情報を入力すべくスマートフォンに代表される携帯端末を用いたシステム構築状況について述べる。従来のリンゴ園では、これまです手書きによって栽培記録や樹の生育情報（以下，カルテ）を記録していたため、栽培計画を立案する際に記録されている情報を確認するのに手間がかかりていた。そこで、これらの情報を一元化して管理するシステムを構築した。このシステムでは、携帯端末から情報を入力し、webを通じて情報をサーバへ送り、管理するというものである。このシステムの大きな利点は次の3点と考えられる。1つ目はカルテを電子化するので、今後の栽培計画を立案するときに役立つ。2つ目は、情報を記録するとき、手書きから携帯端末による方式へと変わるため、記入が容易になる。最後に、このシステムに各種の情報（以下，圃場）にあるリンゴの品種情報を登録しておくことにより、できるだけ詳細な情報を持つことも容易になる。以上のような利点を備えたシステムにより、大規模な農場経営にも対応が可能と考えられる。

次節以降では、このシステムの説明および実証実験を行った結果、さらに農工連携における学習の在り方について述べる。

2. システムの概要
本システムの概要を図1に示す。ここでは、行える事項、サブシステムの構成、そして管理者と複数の作業者の関わりを示している。各サブシステムの説明を次節に示す。

※1長野工業高等専門学校電気情報システム専攻
※2長野工業高等専門学校電子情報工学科
※3山下フルーツ農園

図 1 システムの概要

2.1 サブシステムの概要
品質管理システムでは、樹の病気を発見したときに状況を端末からオンラインで記録し、端末から容易に確認およびフィードバックが可能となっている。収穫管理システムでは、作業者が携帯端末を利用して簡易に樹ごとの収穫数を記録する。作業員管理システムでは、オンラインでの出勤・退勤管理をできるようにする。これによって、従業員の出勤管理が容易になると考えられる。ただし、このサブシステムは計画段階にあり、未実装である。

品質管理システム・収穫管理システムのUIを例示しながら詳しく説明する。

2.2 品質管理システム
リンゴの樹は病気が発症することもあるため、このシステムでは、このような病気を作業員が発見した際に、カルテとしてその情報を記録し、管理する。また、携帯端末から登録し検索をすることができ、管理機能は管理者のみがPCから閲覧できる。
2.3. 収穫管理システム

このシステムには、収穫量の登録機能、リンゴの状態の更新機能、検索機能および管理機能を備えている。
携带端末から行えるのは収穫量の登録、リンゴの状態の更新、検索の機能である。管理機能はPCから使用することを前提とし、その他の機能は、携帯端末から行えるように簡易的なものとした。

次に登録作業のUIを示す。作業員は図3の画面から自分の作業する樹を検索でき、また図場と品種を指定すると、図4のように該当する樹が一覧として表示される。その後、品質を選択することにより、リンゴの状態を登録、または更新することができる。

図3 リンゴの状態の更新①

3. まとめと今後の展望

リンゴ農家の方に、収穫管理システム、品質管理システムの2つを試用を行った。その結果、webブラウザによるデータの入出力は年齢の高いユーザには煩わしく感じられることがわかった。
また、スマートフォン向けに作成したシステムではなかったが、スマートフォンのブラウザとそれ以外の携帯端末のブラウザを用いる場合ではそれほどの違いがなく、あまり使いやすいという結果は得られなかった。
UIがわかりにくかったことが原因であると考えられる。

今後のシステムの改善点について考察する。まずログインについて、現在ではIDとパスワードによる管理を行っているが、携帯端末より入力しているので、時間と手間がかからないという問題点がある。そこで携帯端末の固有IDによる管理にすることを計画している。
また、UIに関する問題については、表示方法が豊かであるスマートフォン上で動作するアプリケーションを用いなければ解決できるものと考えられる。

これらの問題点をすべて解決するために、apple社のiPad上で動作するシステムの開発を検討している。大幅な画面管理の良さ、タッチスクリーンによる直感的に入力できるため、ユーザに好ましいシステムが開発できる。これにより、年齢が高いユーザにも扱いやすいシステムが構築できるはずである。またカメラ機能を活用することにより、樹の状態を撮影・記録することができるため、手書きでは行えなかった画像での記録も行えるメリットもある。以上に示した問題点を解決し、その後、実地試験を行っていく予定である。

本システムでは、リンゴの樹について最初から学び、問題の解決を目指した。農工連携に関する他のシステムに応用する場合も同様であり、例えば畜産に応用する場合には、家畜の特性や生体を扱うゆえに生じる制約について学ぶ必要がある。このように農工連携のためには、農工両面の知識が必要であり、そのためには双方の研究者が多くの検点と関心を持つことが重要である。