モノづくりにおける学科を超えた知識の重要性

The importance of knowledge beyond the course in the manufacturing

○島田 泰奨*1 原 武史*1 野沢 瑛斗*2 中島 久嗣*2 羽田 卓史*3
Taisuke SHIMADA Takeshi HARA Akito NOZAWA Hisashi NAKAJIMA Takuji HANEDA

キーワード : 他学科間協働 モノづくり グループワーク
Keywords : Cooperating Manufacturing Group work

1. はじめに
創造プロジェクトとは、新潟大学工学部附属工学力教育センターにおいて実施されている教育プログラムの一つである。この教育プログラムは工学の原点に立ち戻り、学生がみモノづくりを行うものである。そのプロジェクトにおいて、我々は「自律制御型リコプターの製作」と「遠距離送受信機の製作」という別の活動を行っていた。

野沢・中島のグループは、ラジコンヘリコプターを購入し、自律制御型ヘリコプターを製作している。その過程で基盤の回路配線パターンの設計、プログラムの設計を行った。現在は、そのの動作を検証するための試験装置を作製し、自律制御可能なヘリコプターの性能を向上させている。

島田・原のグループは、海外からの短波送信を受信するための長距離送信機を製作している。短波帯が電離層の反射により世界中へ電波伝播が起こるため、多くの国で国際送信を行っている。しかし、これらの信号がアンテナに入ることは微弱な信号となるため、利得の高いアンテナが必要である。現在は、海外の送信機に向け受信機の感度向上を行っている。

これらの過程で、自分の専門外の知識が必要となった。そこで、協力しあい互いの技術の共有を行うことで問題を解決することができた。本稿では、そこで実感した「モノづくりにおける学科を超えた知識の重要性」について、それぞれの立場で感じたことを述べる。

2. 具体的な事例
ここでは、我々が工学力教育センターの創造プロジェクトにおいて、他学科の知識・技術の必要性を感じた事例を述べる。

※1 新潟大学工学部電気電子工学科
※2 新潟大学工学部機械システム工学科
※3 新潟大学工学部附属工学力教育センター
2.2 長距離放送受信機での事例

島田, 原は電気電子工学科に所属する学生である。我々のプロジェクトでは、長距離放送受信機の製作を行っていた。これは、高さ2mほどのアンテナを製作する必要があるものであった。このアンテナは、△ループアンテナと呼ばれる簡易で感度よく受信することができる三角形の形状をしたアンテナである。

電気電子工学科では電磁気学や電磁界放送の理論について学ぶが、"具体的にどう組み立てるか"という実習は行わない。そのため製作の初期段階では、材料の強度やどのように補強すれば良いかという知識が足りず、形を安定させることができなかった。私は、三角形の角の部分を網のようなもので結ぶことによって形を維持しようと考えたが、強度が足りなかった。インターネットで検索してみたものの、私の基本の知識が足りない理由として、自力で製作可能な方法にたどり着くことができなかった。そこで、機械システム工学科所属の学生である、野沢、中島にアドバイスをもらった。彼らのアドバイスにより、角にアルミの支えを取り付け、塩化ビニール製のパイプに穴を開け、ロックタイトで固めるという方法によって安定させることに成功した。

私たちのプロジェクトでは、電子回路を製作することがメインであるが、その知識だけでは目標を達成することができなかった。この経験から、モノづくりは自らの学科の授業だけでは不十分であり、他の学科の知識や技術も必要であるという認識がさらに深まった。そして、その技術を学習するためには自ら学ぶという方法もあるが、他学科の学生と協働することで、それより上の知識・技術を得られるということを実感した。

3. 他学科間協働の重要性の考察

我々は前述ののような他学科間協働をしたことにより、自分たちの目標へ近づくことができた。この様に他学科間協働がなせなかったが、他学科間協働による相互の知識・技術の受け渡しの重要性についての考察を行う。

現在、工学力教育センターはNHKロボットコンテストに向けてロボットを製作するプロジェクト、全日本学生フォーミュラ大会向けフォーミュラカー製作するプロジェクトを初めとして、多数のプロジェクトが1つの部屋で活動している。その結果、学科に捉われない交流が生まれ、授業外での議論が活発になる。その議論は、それぞれの学科の授業内容やモノづくりにおいて必要な知識の内容が主である。また、その議論を通してアイデアなどが生まれることが多くあり、それが我々のグループのモノづくりを大きく変えることもあった。

モノづくりを行う際に、我々他学科の知識を活用しなければならない状況に遭遇する。このため、専門外の知識が必要になる。そこで重要となるのが"技術は人にある"という言葉である。

技術に関する情報は、文献やインターネットでも入手することは可能である。しかし、それらの情報は、対象とする技術の分野に関する知識がある程度ないと活用することはできない。これでは、文献やインターネットの情報は、実際の技術と比較すると圧倒的に情報が不足していること原因である。このようなことが起こる原因は本やホームページの著者は、その分野に長年携わっているため、多くの技術的な理解を前提としているからである。そのため初学者には内容が理解できなくなるという問題に直面する。

他学科間協働を日常から行っていると、他学科の学生から基礎的な知識を得ることができる。これにより、書籍やインターネットではなく人から直接的に技術を学ぶことができたため、より効率のよい学習を行うことができる。そして、モノづくりに必要な他学科の知識を共有する機会が生まれるのである。

謝辞

本発表を行うにあたり、我々の活動する環境を提供してくださった新潟大学工学部附属工学力教育センターの教職員の方々に多大な感謝を申し上げます。

参考文献

1) 仙石 正和ほか著”工学力のデザイン”、丸善株式会社、p67,2007年。