Arduinoマイコンを用いたバーサライタ製作によるもののつくり教育（第2報）

Manufacturing Education through Trial Production of Versa Writer using Arduino Micro Computer (No.2)

○高瀬 冬人※1 片田 喜章※1 鹿間 信介※1 井上 雅彦※1
Fuyuto TAKASE Yoshiaki KATADA Sinsuke SIKAMA Masahiko INOUE

キーワード：マイコン、バーサライタ、もののつくい教育、エンジニアリング・デザイン
Keywords: Micro Computer, Versa Writer, Manufacturing Education, Engineering Design

1. はじめに

マイコンを用いたLED表示装置(バーサライタ)製作を通じて、3年生向けのもののつくい教育を行う教材を開発し、本格実施した。バーサライタは、直線上に配置したLED(発光ダイオード)を振りながら点滅させて、空間に文字や模様を表示する装置である。まず、全受講生を対象に発表練習を行い、続きに試作を手がけ、作品を作成し、発表練習を行った。その後、集会を行い、アイデアと試作品の完成度を評価することで、工業製品の開発設計製作のプロセスを体験させる。

2. 科目の位置づけと進め方

本学の電気電子工学科では、2年生および3年生向けのエンジニアリング・デザイン教育の一環として、もののつくる製作を課している。2年生向けには、風力発電機の手作りを題材として、アイデアを出し、実験を行うもの作り演習を行っている。

本報告の教材は、これに引き続き3年生向けの演習の教材として開発した。2013年度は、昨年の試行に続いて、後の15週を次のようになした。

第1週 ガイダンス、設計の一般論
第2週 ハードウェア製作法説明、一次試作品の製作
第3〜4週 マイコンのソフトウェアの講義
一次試作品のソフトウェアのロード
第5週 製品開発の一般論を講義
第6週 試作品の構想を考える
第7週 二次試作品の構想確認中間発表会
第8〜12週 二次試作品のハードウェアおよびソフトウェア製作

第13週 発表練習、第14週 デモに向けた調整
第15週 最終発表会

3. バーサライタ

バーサライタは、目を残像を利用して文字や図形を表示する表示装置である。直線上に並べたLEDをパターンに従って高速で点滅させる。LED配置と直角方向に発光部を動かすこと、発光した軌跡は、文字や図形として見える。

4. Arduinoマイコン

Arduinoマイコンは、イタリア製のマイコンボードであり、1枚約3000円でボードの完成品が購入できる。USBケーブルでパソコンに接続することで、ソフトウェア開発ができる。ソフトウェアの統合開発環境が製作元から無料配布されており、C言語で書いたプログラマをコンパイルして、マイコンボードへ書き込むことができる。

図1. Arduinoマイコンボード
5. 一次試作のハードウェア
 一次試作のハードウェアは、LED8個と電流制限抵抗、傾斜センサを基板上に配置し、フラットケーブルとピンヘッダを介して、マイコンの出力ポートに接続するものである。受講生が共通に製作する。

6. 二次試作ソフトウェア
 二次試作のソフトウェアは、文字パターンを内蔵したプログラムになっている。傾斜センサで検出した振動に合わせて、LEDに文字パターンを転送する。マイコン開発環境の習熟を兼ねて、プログラム完成品を与えて、コンパイル・書き込みさせる。ソフトウェアの内容を理解させるため、機能毎（LED発光制御、傾斜センサ入力、文字パターンの出力制御）の小プログラムを配布し、一次試作品を動作させてから講義を進める。

7. 製品企画と二次試作の計画
 一般的な工業製品の開発プロセスを、製品企画、設計、製造、営業販売分けて説明する）。続いて、最終製品のイメージを導き、二次試作品のイメージを考えさせ、二次試作品の構想を練らせる。

8. 二次試作
 二次試作は、受講生グループ毎に異なる。ハードウェア用部品として大型の基板とLEDを用意した他、1000円の予算内で追加部品の購入も可とした。また、回転式バーサライタを狙うグループ用に、ギア付モータ、位置センサー（光学式および磁気式）も用意した。

9. 発表会
 発表会では、1グループ約3分で、二次試作の構想を発表させ、試作品をデモさせた。一次試作品の文字を置き換えた程度の簡単なものもあったが、回転式バーサライタに動画を表示させるといった高度なものもあった。

10. 結果と反省点
 本年度の反省点をまとめると、受講生アンケートの結果は、全体的に肯定的である。受講生はもの作りに興味を示し、いろいろなアイデアを出して、チャレンジした。授業時間外に夜遅くまで作業したグループも、いくつかあった。

11. おわりに
 マイコンを用いたLED表示装置（バーサライタ）製作を通じて、ものづくり教育を行う教材を開発した。ハードウェアとソフトウェアの組み合わせる二次試作から始め、グループ毎に製品を企画し、試作品の仕様を考えて二次試作に望むことで、工業製品の設計製作プロセスを学ぶ意図である。受講生の多くは高い関心を示し、新しいアイデアが出た。

参考文献
1) 山本、奥野、堀内、田口、小川：「電気系学科2年次生のためのグループワークによるものづくり入門教育」 横浜国立大学電気電子工学科の実験科目『小型風力発電機製作』」、日工教 第60回 工学教育研究講演会 3-103, 2012
2) 長徳一資：「商品開発の流れと設計のポイント」 日本工業出版、2009
3) neuros:「Arduinoではじめる電子工学」工学社、2012
4) 高橋、片田、奥野、山本、井上：「Arduinoマイコンを用いたバーサライタ製作によるものづくり教育」、日工教第61回 工学教育研究講演会 4-229, 2013