「ものづくり基礎工学」への表現する過程の導入
—情報工学分野におけるまとめ—

An Introduction of Summarization Process into “Fundamental Engineering Laboratory”
—A Summary in Computer Science Field—

〇西村亮※1
Makoto NISHIMURA

小坂 敏文※1
Toshifumi KOSAKA

キーワード：要点のまとめ、専門基礎教育、情報工学
Keywords: Summarization, Introduction to Fundamental Engineering, Computer Science

1. はじめに

東京高専では2013年度より、「体験・分析・表現の3段学習成長プロセスによる主体的思考力を涵養する早期技術者教育」のテーマを設けて一般研究費補助金の支援を受けて、1年次学生を対象とした専門科目「ものづくり基礎工学」の改善に取り組んでいる。その初年度の取り組みとして「表現の過程を導入した。これにより実験テーマごとに要点をまとめて提出されることと学年末の発表会からなる」。

本報告では、実験実習が行われる全5分野のうち、情報工学分野の実習において回収された要点まとめについて、回答の傾向を集計した結果について述べる。また、同分野において3回実施した要点まとめ提出に関するアンケートの集計結果についても述べる。

2. ものづくり基礎工学について

2.1 近年の課題

2005年度の科目開設以降、実験実習の内容の変更が加えられてきたが、指導書による段取りの重要性を示す。メモを取るが実際の実習では、メモを取りながら実験実習をするのを促し、主体的な取り組みを目指すものである。

この課題の数は、前述のように主体的な取り組みを促すために行わせるものであるが、その内容は次の実習テーマにおける重要事項の実習を踏むものと重要である。その観点から一覧表の傾向を分析するために、回答内容の要を次に3類型に分類した。

類型1：実験課題の体験関係ないもの
類型2：実験課題関係しているが、類型3には該当しないもの
類型3：実験課題の重要事項に関するもの
類型2、3に該当する事項は実験テーマごとに定めた。

2.2 情報工学分野の実習テーマ

情報工学分野において、以下のテーマで実習を実施している。

J1：プログラミングの基本
J2：動きのあるグラフィックス
J3：表示装置とスイッチの利用
J4：センサの利用とモータの制御
J5：音の波形と分析

※1 東京工業高等専門学校情報工学科

J1及びJ2についてはコンピュータグラフィックスを題材としたプログラミングを行っている。J3及びJ4についてはマイコンコンピュータを題材として、単純なプログラムに加え、マイコンによる外部の装置の制御を体験している。J5については、音の簡単な分析を題材として、ディジタル信号処理の一端に触れさせている。

3. 実習テーマごとに提出された要点まとめ

3.1 実施の方法と回答の分類

毎回実習終了時に、その日の実習で重要と感じた点を箇条書きで3点挙げさせ、それぞれについて重要と感じた理由を2行程度で書かせるものである。これにより実習開始前に予告することにより、要点を考えたり、メモをとりながら実験実習をするのを促し、主体的な取り組みを目指すものである。

この課題の数は、前述のように主体的な取り組みを促すために行わせるものであるが、その内容は次の実習テーマにおける重要事項の実習を踏むものと重要である。その観点から一覧表の傾向を分析するために、回答内容の要を次に3類型に分類した。

類型1：実験課題との直接関係ないもの
類型2：実験課題関係しているが、類型3には該当しないもの
類型3：実験課題の重要事項に関するもの
類型2、3に該当する事項は実験テーマごとに定めた。

以下にその例を示す。

J1：座標の計算、関数の利用、図形の描画法、コンパイラ設計
J2：変数の利用、変数を用いた式、更新代入、条件分岐、図形の移動関すること
J3：LEDの点灯制御、LCDへの表示、スイッチの状態読み取り、コンパイラと転送の方法
J4：A/D変換器、距離センサ、モータの制御、if〜else文
J5：音の波形、周波数、スペクトル
類型 2 及び 1 に該当する回答の例を以下に示す。
類型 2：プログラミングにおける細かな注意点、実験課題に関係する周辺知識、実験の題材に関する一般的な事項
類型 1：PC の操作に関する事項、機器の取り扱いに関する一般的な事項、一般的な実験に対する心構え

3.2 集計の結果
各実験テーマについて、類型別回答項目数の分布を図 1 に示す。回答項目数は、J1 及び J2 が 621、J3 及び J4 が 606、J5 が 603 であった。

【図 1 要点まとめにおける類型別回答項目数分布】

教員側の意図する点が伝わったと認められる類型 3
に該当する回答は、いずれのテーマも30%程度である。
この割合は必ずしも高くはない。しかしながら、類型 2 を合わせると70〜80%程度となり、幅は広いものの、
でおむね実験の内容に対して学生が要点を見失っていることがわかる。類型 2 が多くなっているのは、基礎
知識の少ない 1 年生が対象であること、プログラミングで必要とされる知識や技能が初学者には多く感じら
れたことがあると考えられる。
一方、類型 1 に該当する回答の回答も 30%に達
している。この種の記述が失われることは避けられない
が、これがもう少し少なくなるようにし、より実験の
要点が伝わるように改善すべき点もある。

4. 要点まとめ提出に関するアンケート
4.1 実施の方法
実験テーマ J2、J4 及び J5 の終了時の 3 回、要点ま
とめ提出に関するアンケートを実施した。実施時期は
1 回目が 4 月から 7 月の間、2 回目及び 3 回目が 10 月
から 1 月の間である。アンケート項目数は以下のとおり
であり、いずれの項目についても、4 段階の選択肢か
ら回答させた。
(1) 要点は何かを考えながら演習を行った
(2) 最後に振り返って要点は何だったかを考えるとき、その日の演習内容が頭の中で整理された
(3) 要点をまとめられる作業は自己にとって有意義だ
(4) 要点をまとめられる作業は学生を主体的に参加させる
ことになると思う
(5) 今回の実習で、自分の知識技能が広がった
(6) 今回の実習はいやだったが義務感で作業した

4.2 集計の結果
各アンケート項目について、回答の分布を図 2 に示す。項目 (1) から (5) については、最も肯定的な回答を
4、最も否定的な回答を 1 として、項目 (6) については、
最も義務感を感じたものを 1、そうでないものを 4 と
して集計した。アンケート実施時の出席者はのべ 610
名、のべ回答者数は 587 名、回収率は 96%であった。

【図 2 要点まとめ提出に関するアンケートの回答分布】

この結果から、学生の 80%はおおむね主体的に実験
に取り組んでいたことがわかる。また、実験に対する
義務感を感じた学生もそれ程多くはなかった。

5. まとめ
東京高専 1 年次で開講されている「ものづくり基礎工学」において回収された実験テーマごとの要点まと
め及び要点まとめに関するアンケートについて、回答
の傾向を集計した。これらの結果から、学生が実験テ
ーマの範囲で幅広い点を要点として挙げ、また、おお
むね主体的に実験に取り組んでいることが示された。

今後、学生の主体的な取り組みの姿勢を更に引き出
すとともに、「体験」、「分析」の過程を導入した実
験内容の改善に取り組む予定である。

参考文献
1) 小坂敏文、大塚友彦他、体験・分析・表現の 3 段学
習成長プロセスによる主体的思考力を涵養する早期技
術者教育、東京工業高等専門学校研究報告書第 45(2)
号、pp.109-112、2014 年 1 月
2) 西村茂、松林勝志他、東京高専における新入生向け
体験重視型基礎教育～その 4 情報工学分野～情報
工学体験教材としてのプログラミング入門～、平成 19
年度工学・工業教育研究講演会講演論文集、
pp.572-573、2007 年 8 月