Improvement of Teaching Activities on Math and Science Using Writing Papers and Its Evaluation

○田中 忠芳*1 杉本 浩*1 青木 克比古*1
Tadayoshi TANAKA Hiroshi SUGIMOTO Katsuhiko AOKI

Keywords: Improvement, Evaluation, Education

1. はじめに

金沢工業大学工学部（以下，本学）では，1年次の前学期及び後学期に「工学のための数理工」を講義し，本学独自に教科書を執筆して使用している。前学期では，微分積分法の基礎として，三角関数，指数関数，対数関数を取り上げ，関数の概念およびその性質を理解するため，十分な演習を行う。これら演習に参加する形態の上，数学の理工学的応用に関するさらなる理解を深める。後学期では，前学期を踏まえて，積分法，微分方程式を扱う。

本報では，本学の教科書に準拠して考察された演習シートを紹介し，演習シートを用いた「工学のための数理工」の授業改善とその評価について報告する。

2. 演習シートの考案とその特徴，使用法

従来の数学の授業における演習は，ある学習者が黒板等に答えを書き，それを指導者が添削する形で実施されることが多い。学習者の一人ひとりが演習問題の解答作成に参加する形態の演習授業ができないかと思案し，演習シートを作成した。このシートには，授業年月日（曜日）時限，クラス名，氏名を記載する。

図1：演習シート（1枚目，2枚目以降）の上部（用紙サイズ：A4縦210×297mm）

※1金沢工業大学基礎教育部数理工教育研究センター

公益社団法人日本工学教育協会 平成26年度
工学教育研究講演会講演論文集 — 58 —
毎回の授業開始前に、その時間に使用する演習シート（1枚目）を配布する。その授業内に使用した演習シートすべてに授業年月日（曜日）時限、クラス名列番号、氏名を記載後、授業終了時に個々人でまとめて提出し退室させた。提出された演習シートは、検印を捺印後、スキャナを用いてPDFファイルで控えを保存し、次回の授業開始前に演習シートを学生に返却した。演習シートの返却に際しては、教室の最前列に番号、氏名が見えるように並べ、その中から学生が各自のシートを持っていくようにした。

3. 演習シート活用による授業改善の評価

当該クラスで2013年度前期期に実施したテスト1、中間試験の各設問群の信頼性係数（クロンバックのα係数）1,2は、テスト1：0.758、中間試験：0.782であり、各設問群の信頼性は担保されている（表1）。

<table>
<thead>
<tr>
<th></th>
<th>テスト1</th>
<th>中間試験</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>2013/04/30</td>
<td>2013/05/23</td>
</tr>
<tr>
<td>Average</td>
<td>51.65%</td>
<td>64.04%</td>
</tr>
<tr>
<td>Standard Deviation</td>
<td>19.17</td>
<td>20.44</td>
</tr>
<tr>
<td>Number of problems</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Number of students</td>
<td>47</td>
<td>47</td>
</tr>
<tr>
<td>Cronbach's reliability coefficient α</td>
<td>0.758</td>
<td>0.782</td>
</tr>
</tbody>
</table>

（1st Term of K.I.T., 2013）

図2に、テスト1（2013年4月30日実施）と中間試験（2013年5月23日実施）における個別正答率の推移を示す。この推移を類別するため、テスト1をPreTest、中間試験をPostTestとし、個別正答率の推移を次式で規格化した。

\[\frac{s_f - s_i}{100 - s_i} \]

ここに、\(s_i \)はPreTestにおけるある設問群に対する個別正答率（%）、\(s_f \)はPostTestにおけるある設問群に対する個別正答率（%）である。

この定義から、\(s_f \)は、PreTestからPostTestまでの個別正答率の補完率を表していることがわかる。この補完率を次のように定義し、図2に補助線（破線）を引いた。

High\(s_f \) : \(0.7 \leq s_f \)
Medium\(s_f \) : \(0.3 \leq s_f < 0.7 \)
Low\(s_f \) : \(s_f < 0.3 \)

\(s_f \)にもとづく個別正答率の補完率分布を図3に示す。

4. まとめ

演習シートを用いた授業改善により、学生の学ぶ姿勢が能動的になることが示唆され、演習シートを用いた授業の有効性が示された。また、学生個々の学びを定量化する上で、個別正答率の推移を規格化した\(s_f \)が有効であることが示唆された。

個別正答率の推移ならびに補完率分布から得られる情報を、さらにきめ細かな学生指導、さらなる授業改善ならびに教材の改訂へとつなげることが可能であることが示唆された。

引用・参考文献