多段階体験によるシステムデザイン能力の開発
—第1報 自律移動ロボット製作を題材としたカリキュラムの提案—

Development of System Design Ability by Multi-Stage Experience
— Part 1: Proposal of Educational Curriculum using Autonomous Mobile Robots —

上田悦子*1 玉木隆幸*1 中村篤人*1 道下貴広*2 笹山智仁*2 鳥島三義*1
Etsuko UEDA Takayuki TAMAKI Shigeto NAKAMURA Takahiro MICHISHITA
Tomohiro SASAYAMA Omitsuyoshi SHIMAOKA

キーワード: システムデザイン能力，多段階体験，自律移動ロボット，レゴマインドストーム，教育カリキュラム

Keywords: System design ability, Multi-stage experience, Autonomous mobile robot, LEGO Mindstorms, Educational curriculum

1. はじめに

奈良工業高等専門学校電子制御工学科（以後、「本校」、「当学科」と略す）では、学科設立以来20年以上にわたり、4年次開講の『実践システム設計（システム設計製図からシステム設計Ⅱを通じ現在に至る）』において、自律型移動ロボットを開発し、学科内プロジェクトを用にPBL（Project Based Learning）を実施してきた。自律型移動ロボットを開発するためには、自在に移動できるベースロボットに、目的に沿った機能を発揮する機能部、センサ、制御基板等を設計・製作する必要があります。ロボット開発に関する一連の生産プロセスを疑似体験させることができ、このような体験を通じて、学生の独創性や協調性などを涵養してきた。

しかし、当学科は複合学科のため、開設科目の多様性が障壁となっており、4年次までに実際のシステムを構築する科目を開講できなかった。そのため、最近の「実践システム設計」ではロボットの設計・製作に困難を感じる学生が増加してきており、ロボットの設計と製作の経験が別として、システムデザイン能力やシステム開発能力を修得できていないという。

このような状況を、カリキュラム変更することなしに改善するため、本学において開講されている基礎工学実験（1年）、電気工学実験（2年）、電子制御工学実験Ⅰ（3年）などの各実験科において、平成24年度から自律型移動ロボットを用いた体験型課題解決テーマを導入し、ロボットシステムを低学年から多段階体験できる教育プログラムを開発した。本稿では、初年度（1年次開講・基礎工学実験）の成果と課題を中心に、今後の展開について紹介する。

2. 多段階体験によるシステムデザイン能力の養成

本教育プログラムの各学年におけるテーマ設定計画を表1に示すが、各学年のテーマ設定計画は、学年が進むにつれ、既成の部品をもとにした自律型ロボットの開発から、自作の電子回路、プログラミングおよび機械部品をもとにした独自の自律型ロボットの開発へと課題内容を徐々に発展させていることがわかる。

さらに、第1学年から第4学年に設定されている一般および専門科目を考慮してテーマ設定を行っているため、自律型移動ロボットの開発において必要となる知識や技術を講義科目から学びつつ、講義科目から学んだ知識や技術を自律型移動ロボットの開発に活かすことができるようになっている。つまり、学生の情熱、好奇心、向上心などを維持させながら、技術や資質を高度化することを狙っている。また、第1学年からの4年間、各学年において自律型移動ロボットを開発するという、早期からの体験重視型創造性教育と、ロボットシステムの開発体験により、システムデザイン力とその感覚が身に付くことも期待している。

3. 基礎工学実験における課題解決型テーマ

3.1 設定テーマ

平成24年11月21日より10回にわたり、レゴマインドストームを用いた課題解決型実験テーマを実施した。実験スケジュールは省略するが、学生を5、6名ずつのグループに分け、グループ毎に自律型移動ロボットを作製させ、学科内ロボットコンテストを実施した。

今年度の競技課題は、あらかじめ、図1に示す競技エリア（アルミフレームを組み合わせて構築できる）内に配置されている色の異なる4個のブロックから、指定された色のブロックのみを自律型ロボットに搭載されたカラーセンサにより判別し、さらに、1つ以上のおせるセンサを用いてラインレースを行い、ゴールへと

*1奈良工業高等専門学校 電子制御工学科
*2奈良工業高等専門学校 技術支援室

公益社団法人日本工学教育協会 平成26年度
工学教育研究講演会講演論文集 592
表1 学年進行に応じた課題解決型テーマ設定

<table>
<thead>
<tr>
<th>学年</th>
<th>科目名</th>
<th>テーマ</th>
<th>ベースロボット要件技術</th>
</tr>
</thead>
<tbody>
<tr>
<td>1年</td>
<td>基礎工学実験</td>
<td>レゴマインドストーム</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•システム設計手法</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•GUIプログラミング</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•ロボットへの興味</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>追加</td>
</tr>
<tr>
<td>2年</td>
<td>電気工学実験</td>
<td>レゴマインドストーム</td>
<td>追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•制御用電子回路</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•C言語プログラミング</td>
</tr>
<tr>
<td>3年</td>
<td>電子制御工学実験</td>
<td>レゴマインドストーム</td>
<td>追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•一部機構の自作</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•部品の設計・製作</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(三次元プリンタの活用)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>オリジナルロボット</td>
</tr>
<tr>
<td>4年</td>
<td>実践システム設計</td>
<td>レゴマインドストーム</td>
<td>追加</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>•ロボットシステム全体の設計・製作</td>
</tr>
</tbody>
</table>

持ち帰るものである。

学生が開発したロボットを図2に示すが、実験では、単にロボットを作るだけでなく、PDCA（Plan, Do, Check and Action）の4サイクルを従事させることを強く意識させた。各作業グループおよび学生個人はそれぞれ、各々の学習状況を記録させ、期日までにそのチェックシートをサーバー上のフォルダーに提出させることとした。提出された各チェックシートは、毎週数の担当教員および担当教員および教員により添削して学生にフィードバックした。図3に添削例を示す。このようなチェックシートおよび添削結果などの記録による事後評価によって集積される情報をもとに、グループと個々の創意工夫や試行錯誤の歩みを評価した。

図3 報告書の添削例（Wordの校閏機能を利用）

3.2 成果と課題

本テーマ終了後の各個人レポートからの、本実験期間中に非常に充実した成果が得られとのコメント、また、「高付に期待していたことを実現できた」とのコメントが多く、学生に大きな満足感を与えることができ、さらに、2年次以降の学習内容への意欲を引き出せたといえる。また、プログラムや構想を再び担当し、報告書をチーム内で共有することにより、各自の進捗状況を確認しながらロボットを開発することができたようである。一方、チームごとに開発するロボットの台数を増やし、チーム内から1台選抜するなどの工夫により、ロボット開発に費やす個々人の時間を増加させる必要があるとの課題が指摘されている。

4. おわりに

多段階体験に基づくシステムデザイン能力を開発するために導入した、当学科独自の教育プログラムおよびその初年度の成果と成果について報告した。本取組みは、NSKメカトロニクス技術高度化財団からのご支援と本校技術支援室、山田大輔氏のご協力を得て行われたものである。ここに記して感謝の意を表します。

参考文献

1) 棟弘明 他：「企業技術者の実際的な経験を活用したメカトロニクス教育」日本機械学会ロボティクスメカトロニクス講演会2012予稿集、2A2-D07 (2012).