アルミ製ハイパーコーソーの開発を通した
エンジニアリングデザイン研究 (第 2 報)
- 製造プロセスおよび性能の改善 -

Engineering Design Education through the Development of Aluminum Hyper YO-YO (Part2)
- Improvements in Manufacturing Process and YO-YO performance -

講演番号：1F05

キーワード：エンジニアリングデザイン、製造指向設計、PBL、製造プロセス、改善

Keywords: Engineering Design, Design for Manufacture, PBL, Manufacturing Process, KAIZEN

1. はじめに

機械工学部では、2013年度から3年次後期講座科目「機械創成実演演習」において、エンジニアリングデザイン教育の一環として「ヨーヨー開発プロジェクト」を実施している。このプロジェクトにおいて、図1で示すように演習と思考のフレームを広げることで、履修者はより具体的な設計・開発に取り組むこととなる。指示側としては、初期段階でのフィードフォワード、および製造プロセスからのフィードバックの設計プロセスを経ることによるエンジニアリングデザイン能力の向上が期待できる。

2013年度では、立ち上げ年度ということもあり、履修生も指導教員も試行錯誤的な取り組みを強いられ、プロジェクト実行過程でいくつかの問題が明らかとなった。重要な課題は次の三つに要約される：(1) ボディ加工が困難で工程設計に強い制約が加わった、(2) CAD 情報からの NC（数値制御）コードの生成に多大な時間を要した、(3) 量産計画に全く触れることができないグループが多かった。2014年度では、これらの問題を解消すべく、製造プロセスの改善・見直しに取り組んだ。

本稿では、製造プロセス改善の具体的な取り組みと、その改善が DFM プロセスやヨーヨーの性能に影響を及ぼし、結果的に教育効果の向上へと結びついたことを報告する。

2. ヨーヨー開発プロジェクト

2014年度の科目履修生（プロジェクト参加者、3研究室）は37名を14チーム（2名もしくは3名）に分けて、チームごとにいくつかの課題を通じてプロジェクトを遂行させることとした。

図2に本プロジェクトで製作するヨーヨーの部品および完成状の例を示す。ボディは円柱状のアルミ合金を2軸 CNC 旋盤で削り出すことにより作成する。二つのはずれのボディの間にベアリングと、新たにプリフィニシングを経て、これらを φ3～5mmのネジで固定する。
なお、直径の異なる円柱アルミ合金（φ70 mm、φ60mm）、ベアリングはメタル、ブーリ、ボールベアリングのそれぞれを数種類用意し、自由な発展
プロジェクトでの学習課題は次のとおりである：本体設計（ボディデザイン、部品選定、製造可否の検討、力学モデルによる事前評価）、工程設計（加工手順、製造コスト算定）および製作（製造リードタイム、性能評価と量産化検討）である。各段階において、チームに報告書を提出し、後述の完成品の性能コンペやプレゼンテーションプロジェクトへの貢献度を加味した総点を各実習者の評価とした。

3．改善とDFM
3.1 製造プロセスの見直し
2013年度では、工程数の最小化を図って、盤面に被削材（円柱アルミ合金）のチャックを1回（工程）とし、左右のボディを同一方向に研削出るようにしていた。ところが、工具の移動距離や刃先の当て方による制約が生じ、設計の大きな見直しや、無理な切削に起因することを発見した。
そこで2014年度のプロジェクトでは、ボディを対称に2回ずつずらして、ボディの表面外径の除去が第一工程（図3参照）で、残りの切削工程は第二工程とした。

工程間の準備時間が生じる分、ボディ切削の総処理時間は長くなる（せいせい数分程度）一方、前年度に比べて、切削の自由度と完成品の仕上げ精度（アルミで研削し出しの解決性）が向上し、学生の製作意欲が向上に集中した。また、CNC旋盤の担当技師の負担と精神状態も軽減され、改善ボイスでの学生への指導が高まったことも注目すべき点である。ただし、第一工程と第二工程の切り替え時に、ボディに関する制約が新たに加わることとなった。具体的には、第二工程では図3での円柱表面（10mm以上）を持つ必要となる。各グループにおいて、やみくもにヨーヨーボディを設計するのではなく、このような製造制約についてグループ内議論を通じて考慮することにより、ボディの意図した設計を経験させることが可能になった。

3.2 生産の変更
上述の工程見直しの効果で、ヨーヨーボディの仕上げ精度が高まるとは同時に、ボディにストリーミングの摩擦がほとんど発生せず、「ヨーヨーが回転しない」という事象が生じた。そのため、新たにフリクションパッド（図2左参照）をボディ内側に埋め込むこととし、これについても設計要件の一つとした。
グループによってはNCコードに埋め込み、汎用旋盤を用いて加工したところがある等、工程が多様化した点も興味深い。

4. 結果と考察
図4は製作風景の一例である。2013年度は、設計、コード生成、製作の順を追って実施したが、今回は設計から製作までをループ化し、DFMをより意識させることができた。

性能評価コンテストでは、100mmのストリーミングを用いてヨーヨーを静かに落下させ、落下点での回転数および回転時間（理論的にヨーヨーの回転数を計測し、製作コストを含めてパレット最適な観点から評価した。回転数の平均は2171.0rpm（昨年度度1835.1rpm）、回転時間の平均は45.3秒（昨年度度12.8秒）、さらに製作コストの平均は4723.4円（昨年度度5213.4円）であった。昨年度よりもコストを抑えつつも、性能は飛躍的に向上したことが明らかとなった。

4. おわりに
本プロジェクトにおいて、製作プロセスと仕様変更は、結果として教育効果を高める方向へとつながった。また、昨年度よりもじっくりと深く取り組むことができるように思わせる。今後、量産計画の演習導入が課題である。

注および参考文献
1) 謝訪聡彦・川野常夫・久保司朗・釧本聖司：アルミ製ハイパーアーローの開発を通じたエンジニアリングデザイン教育、日本工学教育協会平成26年度工学教育研究講演会講演論文集、pp.86-87（2014）