ものづくり教育のための卓上射出成形機の開発

Development of Desktop Injection Molding Machine for Engineering Education

○ 尾崎 純一∗1
Jun-ichi OZAKI

キーワード：工学、教育、プラスチック

Keywords: Engineering, Education, Plastics

1. はじめに

プラスチックは石油化学工業の発展とともに利用が急増しており、その回りを見る限り、金属材料よりもプラスチック材料の方が身近であると言っても過言ではない。しかし、高専や大学における機械工学系の学科では、工業材料は従来から金属材料を中心に学んでおりプラスチックについて学ぶ機会は金属材料に比べて大変少ないのが現状である。神戸高専機械工学科（以下、本校）においても例外ではなく、プラスチック材料について学ぶことはほとんどない。プラスチックがこれだけ広く普及していることを考えれば、今後は機械工学の専門教育においてもプラスチック材料について学ぶ機会を増やしていくことが必要ではないかと考えている。

本研究では、実習授業や公開講座等で活用でき、誰が簡単に取り扱えるプラスチック成形機の開発を行うとともに、成形に必要となる型を簡便に製作できるようにするための型製作プロセスについて検討を行った。

2. 実験方法
2.1 射出成形機

製作した射出成形機の外観を図1に示す。また、その仕様を表1に示す。本装置は卓上に設置可能なサイズであり、ヒーター加熱に100V電源を用いている。構造はシンプルで、主にシリンダー、ピストン、ヒーターより構成され、ラック&ピニオンによりピストンが上下動する。シリンダー内に投入されるプラスチック材料はシリンダー外周に取り付けられるヒーターにより加熱溶融され、溶融したプラスチックはレバーを引き下げることでピストンが下がりシリンダー下部の穴から金型内へ射出される。プラスチックの射出するための力源は人力とし、射出圧力はレバー先端に約500Nの力が作用した場合に得られる値としている。

表1 卓上射出成形機の仕様

<table>
<thead>
<tr>
<th>項 目</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>質量 (kg)</td>
<td>L400 × W300 × H550</td>
</tr>
<tr>
<td>外寸 (mm)</td>
<td>0.28</td>
</tr>
<tr>
<td>ヒーター容量 (KW)</td>
<td>2</td>
</tr>
<tr>
<td>射出ノズル径 (mm)</td>
<td>100</td>
</tr>
<tr>
<td>ストローク (mm)</td>
<td>2</td>
</tr>
<tr>
<td>射出圧力 (MPa)</td>
<td>10</td>
</tr>
<tr>
<td>射出体積 (mm³)</td>
<td>20000</td>
</tr>
</tbody>
</table>

2.2 簡易型の製作

簡易型の製作には石膏（家庭化学工業株式会社）およびシリコン（信越シリコン，KE-12）を用いた。まず射出したい原型を粘土に埋め込む。埋め込んだ原型の周囲をブロックで囲み枠を作り剥離剤（石鹸水）を塗布する。次に、石膏：水＝20:17の質量比で混合したものを枠内に流し込み下型を作製する。石膏が硬化した後、下型から粘土を取り外し、原型と枠を取り付ける。そして、剥離剤として石鹸水を塗布し、下型と同様の手順で枠内に石膏を流し込み上型を作製する。硬化後、上型にφ4mmのドリルで穴を開ける。シリコン

※1神戸市立工業高等専門学校機械工学科

公益社団法人日本工学教育協会 平成27年度
工学教育研究講演会講演論文集 — 134 —
を用いた方も同様の手順で製作している。石膏およびシリコンで作製した割り型の一部を図2に示す。シリコーン型では割り型の位置合わせのため、ダボおよびダボ穴を多数設けている。

射出成形条件として、シリンダー加熱用のヒーターの設定温度は150℃とし、型は常温のままとした。

3. 実験結果および考察

3.1 成形結果

図3にアニメキャラクターを原型として成形した成形品を示す。石膏型を使った成形品は原型と比べて最大外径部で±0.1mm、高さ±0.5mm程度の誤差が生じたが比較的精度のよい成形が可能であった。しかし、射出時の圧力によって石膏型が破損したり、成形品に石膏が付着したりするなどの不具合が生じやすく、石膏型の脆性改善が課題といえる。

これに対して、シリコン型による成形品は表面性状が良好であり、型も複数回使用できることが確認できた。しかし、シリコンは軟質であるため、射出時の圧力により型が変形してしまい、成形品は原型より全体的に1mm程度大きくなってしたことから、射出時に型の変形を抑制することが課題といえる。

3.2 簡易型の改善

石膏の脆性改善を図るため、石膏にセメントまたはブンド水溶液を添加して曲げ試験片を作製し3点曲げ試験を行った。セメントは、石膏1に対してセメント0.1および0.2の比率で添加した。また、ブンド水溶液は、石膏1に対してブンド水溶液1の比率で混合して試験片を作製した。曲げ試験片のサイズは、いずれも60×15×5mmとした。

3.3 曲げ試験

図4に曲げ試験の様子を示す。曲げ試験条件として、負荷速度1mm/min、試験片の支持スパン40mmとした。得られた荷重、変位から、曲げ応力を算出した。

図5に曲げ試験の結果を示す。これより、石膏にブンド水溶液を添加した場合、石膏のみや、石膏にセメントを添加した場合と比較して約2倍の曲げ応力が得られることが分かった。これより、射出時における型の破損や成形品表面に石膏が付着する問題が軽減されることが期待できる。また、セメントを添加した場合には、強度向上はほとんど見られなかったが、型の硬化時間が約1/2に短縮できることがわかった。これより、型の製作時間短縮が期待できる。

4. おわりに

プラスチック成形が体験できる教材として、卓上射出成形機および石膏、シリコンを利用した簡易型の製作を行った。製作した成形品では複雑な形状や精度の高い成形品までは得ることはできないが、所望の形状の型を簡便に製作でき、プラスチック成形の代表的な成形法である射出成形が体験できるようになった。今後は、実習授業等での活用や公開講座なども体験に対して活用していくと考えている。

謝辞 本研究はJSPS 科研費 24501078の助成を受けて行ったものである。