日本大学 生産工学部における分野横型教育の構築

—授業における到達目標の設定—

Creation of Systematic Curriculums for Interdisciplinary Education

—Setting of Learning Outcomes—

○鶴見 浩一*1 加納 陽輔*1 中釜 達朗*2

Hirokazu SUMI Yosuke KANO Tatsuro NAKAGAMA

キーワード：分野横型教育、PBL
Keywords: Interdisciplinary Education, Project Based Learning

1. はじめに

グローバル化が進展する世界的状況下では、国際的
に活躍できる知識を備えた技術者の養成が重要
である。大学や専門などの高等教育機関には語学力の
みならず、他国の文化・習慣を理解しながら多様性のある
チームにおいて、課題を達成することのできる人材
の育成という社会からの強い要請がある。日本大学 生
産工学部においても、このような社会的な情勢を鑑み
て、教育目標に即したディプロマポリシー（以下に DP）
と学習・教育到達目標を達成するためのカリキュラム
整備の一環として、多様性のあるチームでの活動を体
験・経験できる教育環境を学生に提供することが急務
となっている。このような教育の展開は、学修に対し
て多様な価値観をもつ学生、知識・能力レベルの異な
る多数の学生に対して、チームワークやコミュニケーションを含む
ジェネリックスキルを涵養する
にあたって、極めて重要となる。

本報は、現行カリキュラムの授業科目において、学
生に多様なチーム活動を経験できるPBLを主体とする
教育環境を提供するための各種の目標の整備、ならび
に体系的なデザイン教育の授業構成について検討する
ものである。

2. 学科横型的な体系的教育環境の整備

2.1「学びの体験・経験」の設定

教育目標に基づいて明確に DP と学習・教育到達目標
が策定されており、これらの相互の関連性を明示し、
学科間における授業レベルにおける共通目標を達成す
るための分野横断型の教育プログラムを体系的に構築
する。同時に、多様なチーム活動における学生的ジェ
ネリックスキルの質の向上を保証するために、ループ
リッチを用いた達成度評価機関も整備する。なお、多
様性のあるチームの例として、JABEE-日工教共催でワ
ークショップでは男女、学年、専門、年級、職業、生
産者・消費者、国籍など1が列挙されている。

生産工学部では、2013年度から連携科目という科目
群に初年次ゼミ、2年次ゼミという科目が設置されて
いる。これらの授業を教養・基礎科学系と9つの専門学
科が連携して実施している。しかし、この2科目にお
いて分野横断型のチーム編成による学生の「学びの体
験・経験」は設定されていない。したがって、図-1 に示
すように、これらの2科目の一部に学科横断型の授業
を導入するが、現行カリキュラムにおいて教育の質
の向上を図るのに有効であると考えられる。

2.2 各種目標の設定

学科間において共通目標(DP や学習・教育到達目標)
を達成するという観点において、多様性のあるチーム
活動により学生が課題設定・情報収集・解決策の創出の

---

*1 日本大学工学部土木学科
*2 日本大学環境工学部応用化学学科
表-1 段階的なPBL教育（○：強い関連性、●：関連性）

<table>
<thead>
<tr>
<th>デザインプロセス</th>
<th>初年次ゼミ</th>
<th>2年次ゼミ</th>
</tr>
</thead>
<tbody>
<tr>
<td>课题の発見・選定</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>情報収集と整理</td>
<td></td>
<td></td>
</tr>
<tr>
<td>解決策の創出</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>複数の解決策の創出</td>
<td></td>
<td></td>
</tr>
<tr>
<td>制约条件を考慮した</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>の解決策の選定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>解決策の実行</td>
<td></td>
<td></td>
</tr>
<tr>
<td>チーム編成</td>
<td>各学科・分野</td>
<td>学科・分野横断</td>
</tr>
</tbody>
</table>

一連のデザインプロセスを経験することを重視しながら、チームワーク力を涵養することができるような授業レベルにおけるアウトカムズ（例えばシラバスの到達目標）の明確な設定が極めて重要となる。したがって、学科間においては、横断型PBLの実施により学生が理解・達成などが可能となる幾つかのアウトカムズやシラバスの「授業のねらい」の一部は同一とすることが多い。

2.3 種類目標の関係

学科横断型の授業実施へ向けて考慮しなければならない種類目標の関係を図-2に示す。DPとJABEE基準1(2)(1)の○とは関係し、学習・教育到達目標を媒体として確認することができる。なお、種類目標はIEAのGA(Graduate Attributes)と整合性を検討する必要がある。

2.4 体系的なエンジニア・デザイン能力の育成

生産工学部土木工学科では、図-3に示すように学生のエンジニアリング・デザイン能力を体系的に育成するための授業科目として、初年次ゼミ(S)，2年次ゼミ(S)،プロジェクト演習I(1)(S)，プロジェクト演習II(S)，卒業研究(S)などを整備している。これらのデザイン能力を育成する科目では、課題探究能力・問題解決能力などを6つのプロセスを通じて養い、学生個人が自主的に、かつ主体的に学ぶ重要性を知ることができる。その6つのプロセスは、I課題の発見、II課題の明

2.5 初年次ゼミと2年次ゼミでのPBL教育

土木工学科の初年次ゼミは、到達目標を達成するために自校教育と教養・基盤科目のカリキュラムにおける特性について教育(9学科関連)，ならびにプロジェクトテストによるPBLから構成されている。2年次ゼミは、主として10学科を共通とするプレゼンテーション技法の教育と防災対策に基づいた「ことづくり教育」から成る。学生は1年次前期に設置されている初年次ゼミにより、自校の歴史・地域に関する事項を9学科共通して学ぶ。さらに、土木工学科ではプロジェクトテストにより「創る」ことが目的として特化したPBLを体験する。この体験により、解の領域が不明確な課題に対して、試行錯誤を繰り返しながらの創意工夫を学習する。2年次ゼミでは、初年次ゼミによる前述の経験を踏まえて、複数学科の横断チームを編成して学術的に専門分野を横断したPBLを実行する。このように、学生は段階的にデザインプロセスを体験することにより、チームワーク力を涵養することが可能になる。

2.6 科目レベルでの達成目標の設定

2年次ゼミでの15回の授業回数のうち、5回程度を分野横断型の授業として実施することから、シラバスにおける「授業のねらい」と「成果評価」、ならびに「到達目標」の一部を、学科間で共通としたわけではない。ここでの一部は分野横断型のPBLを実施するのではなく、試行錯誤が可能となる学生の知識・技能・目標と成果評価方法である。これらの決定に伴い2年次ゼミが満たそうとする各学科の学習・教育到達目標とJABEE基準1(2)(1)の○-○との対応が定まる。分野横断型のPBLでは少なくとも各学科共通してi)に対応しなければならない。分野横断型のPBL教育において各学科共通の達成目標は、「多様性のあるチームでの活動において、課題達成のために自己の役割を的確に果たしながら（メンバーの役割、他者の行動を判断し働きかけることができる（リーダーの役割）」とした。

3. おわりに

日本大学 生産工学部に在籍する学生の多様なチームワーク力を育成するために、分野横断型のPBL教育を導入して検討した。する必要がある。学生は解の領域が不明確な課題に対して、試行錯誤を繰り返しながらの創意工夫を学習する。さらに、複数学科の横断チームにより分野横断型のPBLを実行が、チームワーク力を涵養に寄与するものと考えられる。

参考文献
1) http://www.jabees.org/activity/symposium/