The Program of Mycotoxin Contamination in Food and Regulation

Yoshiko Sugita-Konishi (National Institute of Health Science, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 159-8501)

1. はじめに

今年農水省は、わが国の食料自給率が40%を切ったことを発表した。すなわち、食料を輸入に依存する体制がさらに加速することを意味する。輸入品は、熱帯地方、温帯地方、亜寒帯地方など世界各国で生産されているものである。これらの地方には、わが国では生息しない微生物、特にカビも生息している。農作物の生育方法や貯蔵方法によって、これらの農作物に付着したカビは、生育中や貯蔵中に毒素を産生する場合である。これらの毒素は、いわゆるカビ毒と称されるが、動物やヒトに健康被害を引き起こすものとして、その汚染は食品衛生上大きな問題となる。カビ毒の汚染は、自然の気候によって左右されるため、污染をゼロにすることは不可能であるとされている。わが国のように輸入食品に依存する国で、カビ毒汚染した輸入品を国内に流通させないため、基準値等を防御する必要がある。しかしこわが国では、カビ毒の基準値設定は遅れており、告示で基準値が定められているのはカッラ菌のみであり、アフラトキシンB₁は食品衛生法において規制しているにすぎない。それら近年検査においてカビ毒（アフラトキシンB₁およびバトリリン）が検出されたものとしては表1に挙げたものがあり、非常に多岐にわたっておりその産源国もさまざまである。本稿では、食品を汚染する代表的なカビ毒に焦点をあて、そのリスク評価を紹介するとともに、今後の方向性について述べる。

2. 食品を汚染するカビ毒

食品汚染で問題となるカビ毒の主要なものに、アフラトキシン類、テオキシシリークノール、ニバレノールに代表されるトリコテシン系カビ毒、バトリリン、オクラトキシンA、ゼアラレノン、フミシンに加え、米の汚染が心配されるシトリニン、スチグマトシン系などがある（表1）。そしてこれらのカビ毒が産生する真菌は、アスピルギルス属、フサリウムおよびペニシリウム属の3つに大別される。これらカビ毒のほとんどが低分子であり、耐熱性であるため、食品加工工程や調理工程において失活することなく食品に残存するため、食品衛生上問題となるのである。

1）アフラトキシン

アフラトキシンは、熱帯地方に生息するアスピルギルス属の産生するカビ毒であり、多くの類似体が存在する。その中でもB₁、B₂、G₁、G₂（この4つをまとめてトータルアフラトキシンと称する）が、食品から検出される頻度が高い。アフラトキシンM₁は、アフラトキシンB₁の代謝物であり、飼料中に含まれるアフラトキシンB₁が、牛などの体内で代謝され、乳牛に排泄されることで問題となる。当然アフラトキシンM₁によって汚染された乳牛から作られたチーズやヨーグルトなどにもその汚染が広がっていく。アフラトキシン類毒性は、肝臓障害である。特に慢性毒性として原発性肝臓がんを引き起こすため、カビ毒の中でも最も注意すべきものである。トータルアフラトキシンおよびアフラトキシンM₁のなかで、最も発がん性の強いのが、アフラトキシンB₁である。アフラトキシンB₁の発がん性は、国際がん研究機構（IARC）において、ヒトに発がん性ありと評価されている3）。それに加えてアフラトキシンG₁およびM₁も動物実験などで発がん性が確認されているが、その強さはアフラトキシンB₁の10分の1程度と評価されている4）。アフラトキシンB₁の発がん機構に関しては多くの研究がなされており、肝臓中の酵素（チトクロームP450など）によって活性化されたアフラトキシンB₁（8,9-エポキシドアフラトキシンB₁）が、DNAに結合することが明らかになっている。すなわち遺伝毒性があることが明らかとなった。同様にFAO/WHO合同食品添加物専門家会議（JECFA）や欧
表1. 主要な食品污染キビ毒

<table>
<thead>
<tr>
<th>カビ毒</th>
<th>主な汚染食品</th>
<th>産生菌</th>
<th>健康被害</th>
</tr>
</thead>
<tbody>
<tr>
<td>アフラトキシンB1, B2, G1, G2</td>
<td>ナッツ, 酒類, 香辛料, 豆類</td>
<td>アスベルギルス属</td>
<td>原発性肝臓がん</td>
</tr>
<tr>
<td>アフラトキシンM1</td>
<td>牛乳, チーズ</td>
<td>アスベルギルス属</td>
<td>肝障害</td>
</tr>
<tr>
<td>トリコテシン系カビ毒 (デオキシニバーノール, ニバーノール)</td>
<td>穀類, 豆類</td>
<td>フザリウム属</td>
<td>嘔吐, 下痢, 免疫毒性</td>
</tr>
<tr>
<td>パツリ</td>
<td>リンゴ・果物加工品</td>
<td>ベニシリウム属</td>
<td>消化器障害</td>
</tr>
<tr>
<td>オクラトキシンA</td>
<td>穀類, 酒類</td>
<td>アスベルギルス・ベニシリウム属</td>
<td>腎障害</td>
</tr>
<tr>
<td>ゼアラレノ</td>
<td>穀類, 酒類</td>
<td>フザリウム属</td>
<td>ホルモン障害</td>
</tr>
<tr>
<td>シトリニン</td>
<td>穀類, コメ</td>
<td>ベニシリウム属</td>
<td>腎障害</td>
</tr>
<tr>
<td>ケトテリジノマイシン</td>
<td>貯蔵穀類, チーズ</td>
<td>アスベルギルス属</td>
<td>肝臓がん, 肝障害</td>
</tr>
</tbody>
</table>

州食品安全機構(EFSA)などの国際機関では、アフラトキシンB1の発がん可能性予想要件やベンチマークドーズを用いた暴露マージンを、リスク評価の指標として用いている。たとえば、発がん可能性予想要件とは、1日を体重1kgあたり1ngのアフラトキシンB1を1生涯摂取した場合、健康人では10万人に0.01人が、B型、C型肝炎予防への10万人中0.3人が原発性肝臓がんになると推定される。一方ベンチマークドーズは、ラットの動物実験からBMDL 10（10%のラットが肝臓がんを発症する用逓）は170ng/体重kg/日と推定し、ヒトの疫学的調査結果からBMDL 10（10%のヒトが肝臓がんを発症する用逓）は870ng/体重kg/日、BMDL 1（1%のヒトが肝臓がんを発症する用逓）は78ng/体重kg/日と推定している。暴露マージンは、BMDLを実際のアフラトキシンB1の摂取量で乗じた数値で表す。これらの数値は、基準値を設定するときの重要な目安となるので、肝臓がん発症が予想される用逓によりアフラトキシンB1のみを規制対象としている。今後科学的根拠をもって基準値設定の必要があるであろう。

2) トリコテシン系カビ毒

トリコテシン系カビ毒とは、構造のなかにトリコテシン環を有するカビ毒の総称であり、フザリウム属の真菌が産生する。わが国でもフサリウム属真菌が生じており、特に国産の小麦、大麦にはデオキシニバーノールやニバーノールの汚染が多い。食品汚染するトリコテシン系カビ毒の中で最も毒性が強いのはT2トキシンである。このカビ毒は1950年代に、旧ソ連において大規模な食物中毒事件が報告されている。主な症状は食道性白血病(ATA症)と呼ばれるもので、白血球の減少が起き、感染症や出血により死亡する中毒であった。辛いことにおかが国ではT2トキシンの汚染はほとんど報告されていない。しかしデオキシニバーノールやニバーノールは、T2トキシンほど強い毒性は示さないが、急性中毒では嘔吐、下痢、免疫毒性を持つ。2001年にJECFAにおいてデオキシニバーノールについてのリスク評価が行われ、一日耐容摂取量が1mg/体重kg/日に設定された。これを受けた厚労省は、2002年に小麦のデオキシニバーノールの暫定基準値を1.1mg/kgに設定した。基準値が設定されてから、デオキシニバーノールの汚染濃度は急激に減少し、現在の基準値は1.1mg/kgを下回る小麦は市場には流通していない。一方、デオキシニバーノールと同時に汚染が報告されているニバーノールは、国際的なリスク評価が行われていないことから、一日耐容摂取量も定められていない。これはデオキシニバーノールとニバーノールの同時汚染が、日本、韓国、ヨーロッパの一部、ニュージーランドなど非常に限局したものであることに起因する。しかしながら、わが国にとって同時汚染の問題は深刻であり、正面から対応していかなければならない問題である。われわれは最近ニバーノールの毒性試験を行い、一日耐容摂取量の推定に向けた知見を発表した。この近い将来リスク評価が行われることを期待したい。

3) パツリ

パツリは、主にりんごに病原性をもつPenicillium属の植物病原性真菌が産生するカビ毒である。りんごジュースやりんごの加工品への汚染がパツリの汚染を含む。食物の汚染を含むトリコテシン系カビ毒の大部分を占めているが、ブドウやその他の果物にもその汚染が報告されている。汚染原因としては、虫食いや白腐れなどで落果にどうにもかかわらず、弓なりにカビを産生することにより、これらの傷んだ果実をジュース等の原料に用いることによりパツリの残存が問題となるのである。
表 2. コーデックス委員会基準値

<table>
<thead>
<tr>
<th>かび 毒</th>
<th>基準値の検討状況</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>パツリン</td>
<td>50 µg/kg</td>
<td>リンゴジュース原料用リンゴ果汁</td>
</tr>
<tr>
<td>デオキシニバレンノール</td>
<td>検討中</td>
<td>EC 基準あり, USA ガイドライン</td>
</tr>
<tr>
<td>トータルアフラトキシン</td>
<td>15 µg/kg</td>
<td>加工原料用落花生</td>
</tr>
<tr>
<td>アフラトキシン M1</td>
<td>0.5 µg/kg</td>
<td>牛乳</td>
</tr>
<tr>
<td>オフラトキシン A</td>
<td>検討中</td>
<td>小麦、大麦、ライ麦 EC 基準あり, USA 検討中</td>
</tr>
<tr>
<td>フモシシン B1, B2, B3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

毒性としては、非常に高濃度においては多くの動物に致死的毒性をもつが、変異原性、催奇形性、発がん性などは発見していない。パツリンの中毒例としては1950年代に乳牛の中毒事件が起き、その原因物質としてパツリンが疑われている14)。しかしヒトでは報告がない。

4) オフラトキシン A
オフラトキシン A は、熱帯地方では Aspergillus 属が、温帯地域では Penicillium 属の真菌が産生するカビ毒である。デンマークにおいてブタで発生する腎臓の原因物質として同定され、フンガスラビア、ブルガリアおよびルーマニアなどのパルカン諸国の特定地域の農村で風土病的に多発した腎臓疾患（パルカン腎症）がオフラトキシン A と因果関係があると言われているが、確証はつかめていない15)。オフラトキシン A の急性中毒は腎炎、肝障害および急性脳炎であり、慢性毒性は動物実験で腎がんが観察されている(http://ntp.niehs.nih.gov/ntp/htdocs/LT_rpts/tr358.pdf)。しかしアフラトキシンのようにはっきりした遺伝毒性は認められていない(www.who.int/ipcs/food/jecfa/summaries）。

5) フモシシン
フモシシンは、Fusarium 属の産生するかび毒であり、1988年に真菌培養物から発見された。このかび毒は、ウマの脳炎症状やブタの肺浮腫を引き起こし、産業動物に対しては大きな被害を引き起こす16)。フモシシンはもうろこに高濃度で汚染しており、加工してもその毒性はあまり変化しないことから、もうろこを主食としている地域では大きな問題である。毒性機序としては、スフィンジ脂質の合成阻害や代謝阻害を引き起こすことが分かった学的な原因で明らかになっており、顕在化する症状とのような関係があるのかはまだ不明な点が多い17)。最近の疫学研究から、フモシシン汚染をもうろこに多発するメキシコアメリカ国境地域や西アフリカにおいて新生児に神経骨軟変症が他の地域と比べて有意に多いことがわかり、この相関性が新たなリスクとして注目されている18)。

6) ゼアラレノ
ゼアラレノは Fusarium 属の真菌が産生する、Fusarium 属はゼアラレノのほかにトリコサレチクスカビ毒やフモシシンも産生するため、しばしばこれらのカビ毒との共汚染が検出される19)。ゼアラレノはその構造が女性ホルモンと類似していることから20)。ブタでは、低用量でもホルモン異常を起こすことがあり、試料中のゼアラレノの汚染は経済的に大きな損失を招く。また、内分泌機能物質の一つに分類されているが、ヒトでの中毒例は報告されていない。

3. 国際的なカビ毒の規制
マイコトキシンの規制については、現在その汚染頻度並びに発がん性などの毒性から、同規制の重要性が認識されており、国際機関によるリスクアセスメントが実施されている。

国際食糧農業機関 (FAO) と世界保健機関 (WHO) の傘下である合同食品規格委員会 (コーデックス委員会; CAC)、コーデックス食品汚染部会 CODEX COMMITTEE ON CONTAMINANTS IN FOOD (CCCA)、および科学学者による専門会議である合同食品添加物専門家会議 (JECFA) で行われている。JECFA における調査データに基づいたリスクアセスメントは、CCCA の審議を経て、CAC によるマイコトキシンの基準値の策定に反映される。現在までに CAC で決定されたカビ毒の基準値は、ピーナッツのトータルアフラトキシン、乳牛のアフラトキシン M1、リンゴジュースのパルカンである（表 2）。リスク評価においては、国際環境計画 (UNEP) と国際労働機関 (ILO) が合同で運営する国際化学物質安全性計画 (IPCS) と国際癌研究機関 (IARC) もマイコトキシンの発がん性について評価を行っている。

表 3-5 は、カビ毒のわが国の規制、EU と米国の基準値を挙げたものである21)。わが国においては食品衛生法第 6 条に則りアフラトキシン B1 をその規制対象とし
表3 諸外国のアフラトキシン規制（抜粋）

<table>
<thead>
<tr>
<th>国名</th>
<th>対象食品</th>
<th>アフラトキシン（μg/kg）</th>
<th>基準値</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>B1</td>
<td>B1+B2+G1+G2</td>
</tr>
<tr>
<td>日本</td>
<td>全食品</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>米国</td>
<td>全食品（ミルクを除く）</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>食品もしくは加工品としてのビーナッツおよびナッツ</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>軟戻および軟戻を使用した食品</td>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>（トウモロコシおよび乳幼児用を除く）</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>食品もしくは原材料としての選別前もしくは物理的処理前のトウ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>モロコシ</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>香辛料</td>
<td>0.1</td>
<td>－</td>
</tr>
<tr>
<td></td>
<td>乳幼児用の軟戻を主原料とした加工食品</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EU: ヨーロッパ連合

表4 諸外国のバツリングの基準値（抜粋）

<table>
<thead>
<tr>
<th>国名</th>
<th>対象食品</th>
<th>基準値（μg/kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>リンゴジュース</td>
<td>50</td>
</tr>
<tr>
<td>米国</td>
<td>リンゴジュース、濃縮リンゴジュース、食品中のリンゴジュース成分</td>
<td>50</td>
</tr>
<tr>
<td>EU</td>
<td>フルーツジュース、濃縮フルーツジュースおよびフルーツ果汁</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>リンゴならびにリンゴジュースを原料に生産された蒸留酒、シードおよびその他の酒類</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>乳幼児用の表示や当該用として販売されているリンゴジュースならびにアップルコンボート、アップルピールなどリンゴ果実を含むリンゴ製品</td>
<td>10.0</td>
</tr>
</tbody>
</table>

表5 諸外国のトリコテエン系カビ毒の基準値（抜粋）

<table>
<thead>
<tr>
<th>国名</th>
<th>対象食品</th>
<th>規制値（μg/kg）</th>
</tr>
</thead>
<tbody>
<tr>
<td>日本</td>
<td>小麦および小麦製品</td>
<td>DON</td>
</tr>
<tr>
<td>米国</td>
<td>デュラム小麦、オート麦およびトウモロコシ以外の未加工の穀類</td>
<td>DON</td>
</tr>
<tr>
<td></td>
<td>未加工のデュラム小麦、オート麦</td>
<td>DON</td>
</tr>
<tr>
<td></td>
<td>パスタ（乾燥）</td>
<td>DON</td>
</tr>
<tr>
<td></td>
<td>パン、ベストリー、ピスケット、シリアルサッシュ、ブレック</td>
<td>DON</td>
</tr>
<tr>
<td></td>
<td>ファーストシリアル</td>
<td>DON</td>
</tr>
<tr>
<td></td>
<td>乳幼児用の穀類を主原料に使用した加工食品</td>
<td>DON</td>
</tr>
<tr>
<td></td>
<td>未加工穀類</td>
<td>T-2</td>
</tr>
<tr>
<td></td>
<td>未加工小麦</td>
<td>T-2</td>
</tr>
</tbody>
</table>

* 現在提案中、2008年7月1日までに決定 DON: デオキシニバルノール

ている。現行試験法は、平成14年3月26日に出された食監発第0326001号であるが、食品衛生法としては当時の分析法において、「アフラトキシンB1を検出しないこと」から、当該分析法の検出限界であった10 μg/kgが実質上の規制値となっている。一方、EUならびに米国などは、最も高い発がん性を有するB1を含むB2、G1、G2（トータルアフラトキシン）の4種類の総和で規制を行っている。米国では全食品が対象で20 μg/kgであり、EUでは厳しくトータルアフラトキシンとアフラトキシンB1の両方で規制を行っている。特に乳幼児が食する食品に対してはアフラトキシンB1のみであるが非常に厳しく設定されている（表3）。

バツリングの国際規格は、表4に示すとおりである。わが国はいまのところリンゴジュースだけが規制の対象であるが、米国ではリンゴを原料とする他の飲料まで規制の対象となっている。コーデックスの推奨する基準値に従って50μg/kgがほとんどであるが、EUでは乳幼児用のリンゴ加工品に対して一般的の1/5の基準値を設け
４．おわりに

輸入食品への依存が増しているわが国では、水準での規制が国民の食品の安全確保にとって非常に重要である。すなわち、適正な基準値を設定することにより、国民の健康被害を最小限に留めなくてはならないのである。わが国では、規制のあるカビ毒（アフラトキシンB₁およびバシリン）を対象にモニタリングを実施しており、問題があれば命令検査としている。国際的にカビ毒に対して基準値設定が進むなか、わが国が基準値を設定していない場合、基準値で拒否された食品がわが国に輸入されるとという危険も伴ってくることも念じておく必要がある。このような事態を未然に防ぐためには、わが国で基準値のない食品については、常にモニタリング等によりその汚染量を把握しておく必要に迫って基準値策定をしていかなければならない。

文 献

7) 厚生労働省：小麦中のデオキシバレノールに係る暫定的な基準値の設定について，平成14年5月21日，食畜 第6521001号 (2002).
17) WHO: Safety evaluation of certain mycotoxins in...