３次元形状を誇張するための投影変換手法

宮澤 貴之* 佐藤 宗幸 望月 義典 近藤 邦雄 佐藤 尚 島田 静雄
埼玉大学工学部情報システム工学科

Abstract: 立体を２次元平面上に映し出す手法として、投影法がある。本来の投影法は物体をいかに正確に２次元平面上に再現するか、ということを目的としている。しかし、画像を見た人にとっては理解しやすく、雰囲気を伝えやすくするために、熟練した技術者によって形状や色を誇張した表現もある。本研究ではそのような表現を分析し、熟練した技術によって作成された手法を自動生成するアルゴリズムを提案する。本手法は、数ある強調表現の中でも形状の強調を目的として、誇張させる度合と方向を決定して投影変換時に組み込む。本手法によって生成される画像は、元の画像に比べてより雰囲気の伝わる画像になった。

<Keywords>コンピュータグラフィックス、投影変換、ノンフォトリアルシックステックレンジリング、強調表現、形状誇張

1 はじめに

コミュニケーションを円滑にするために、正確な画像の上にさらに手を加えたり、デフォルメすることにより表現が豊かな画像を作り出す手法がある。意味解釈を容易にするためには対象を正確に再現するだけでなく、特徴を強調するというアプローチがある[1]。これが特徴強調表現の考え方であり、ノンフォトリアルシックステックレンジリングの意義である。

一方、通常の観点ではありえない、少し異常な形状をしていますが、なかか引き付けられる絵やポスターを見ることがある。イラストレータや画家、漫画家が伝えたい形状や形状の動きを表現するために手を加える表現である。この表現によって、形状は雰囲気を伝えるためにいろいろな形に伸ばされたり、縮められたりする[5][6]。しかし、この表現は卓越した技術に頼っている現象である。

そこで本研究では、投影変換を拡張し、形状を誇張するための投影変換手法を提案する。立体上の点は投影変換により投影面の上の座標に写される。このとき、誇張パラメータを掛け合わせることによって、作者の意図するような様々な形状誇張の座標変換を行う手法である。本手法は従来の手法と違い、形状データには手を加えないため、形状データの保持が可能である。

2 誇張表現の分析

図1[5]、図2[5]の絵画はどちらとも実際の投影変換では見ることができない構図である。

図1[5]はシャイロスの「自画像」であるが、手と顔の形状が胸と腕に比べ非常に大きく描かれている。この手法により、この絵画を見る人間は無条件に手と顔に目がいく。

図2[5]は、システムの「ピエタ」である。この絵画を見る時、人は自然と死んでいるキリストの顔に目がいく。これは頭の形状と足の形状を比べてみればわかるように、頭の方向に向かって形状が大きく描かれている。

URL:www.ke.ics.saitama-u.ac.jp/jacky/work/kenkyu.html

†〒338 櫟木市下大久保255

—— 77 ——
1. 正確な投影変換ではない
2. 規則性を持ち、形状が一方向にそって拡大・縮小されている
3. 作者の伝えたい形状・動きが誇張によって表現されている

3 誇張表現アルゴリズム

3.1 誇張投影変換の手順

誇張投影変換の手順は以下の通りである。

1. 視点・物体・注目点・誇張方向・誇張度を決める値を入力する。
2. 視点から投影面を通って注目点に向かう直線を視軸とし、注目点を含み、注目点から視点に向かうベクトルを法線ベクトルとする面を投影面とする。

3. 誇張させる方向に、誇張を行う座標系の z 軸を設定し、z の値により、誇張する。

4. 視軸を視点座標系の z 軸とあわせて誇張投影した画像を生成する。

3.2 視点・物体・投影面の設定

本研究では、図?? のように注目点上に視線方向ベクトルと垂直になるように投影面を設定する。そして、物体と視点を設定すると、立体上の点 \(P(x, y, z) \) の投影面上の座標 \(\overline{P}(x', y', z') \) は、視点を z 軸上の \(E\!z \) とすると

\[
P' = \frac{E_z}{E_z - z} P : (z' = 0) \quad (1)
\]
となる[11][12]。

図 3: 投影変換

3.3 誇張表現式

誇張させるには以下のような式が考えられる。視点に近い点を大きく見せる誇張式、視点から遠い点を大きく見せる誇張式、注目点付近だけを大きく、また小さくする誇張式など作者の感性によっていろいろな変化の仕方がある。誇張させる方向にも様々な方向があり、それにより形状の動きを表現したり、また視点方向に誇張させた画像からは違った雰囲気を与えることもできる。
従来の手法としては、形状をへこませる、曲げる、伸ばすという種類の手法が存在している。本研究では、投影変換する時点で一方向にそって形状を膨張・縮小させる手法を提案する。

そのための方法としては、通常の投影変換の場合、モデリング座標系にあるモデリングデータにあわせて視点座標系を変換した後、投影座標系に映し出す。この過程において視点座標系を変換させる前に、膨張させる方向ベクトルを等軸とする膨張を行う座標系に合わせ、その膨張の値を使用して膨張度を決定し、付加する。その後に、視点座標系をあわせて投影変換する。

これを式に直すと、モデリング座標系の形の位置を \(P \)、モデリング座標系から膨張を行う座標系への変換を行うマトリクスを \(M_1 \)、膨張を行う座標系から視点座標系への変換を行うマトリクスを \(M_2 \)、膨張度を \(T \)、そしてその膨張を行う座標系への変換後の座標を \(P'' \)、視点を \(e \)、視点に合わせた変換後の座標を \(P''' \) とすると

\[
P'' = TM_1 P
\]

\[
P''' = M_2 (P'' - e)
\]

となる。

![4: 座標系と膨張方向](image)

図 4: 座標系と膨張方向

\[T_1 = k_1 x + 1 \quad (4) \]
\[T_2 = e^{k_2 x} \quad (5) \]

\(T_1, T_2 \): 膨張度
\(k_1, k_2 \): 任意の定数
\(x \): 視点からの奥行き情報

一つは (4) 式である。この式により投影変換後の画像は、\(k_1 \) が正のとき、注目点を中心として膨張ベクトルに向かう方向の点の位置がより大きく、逆方向に向かう点が小さくなる。\(k_1 \) が負のときはその逆になる。

(5) 式も (4) 式と同じ処理を行うが、指数関数の性質により、\(k_2 \) が正のとき、膨張ベクトルの方向に向かうにつれ膨張度合が急激に増し、逆方向の膨張は少ない。

この 2 つの式の定数 \(k_1, k_2 \) を変化することにより、その物体の雰囲気の伝わり易い膨張度合を探して決定する。

![5: 膨張変換](image)

図 5: 膨張変換

3.4 膨張度

本節では 2 つの膨張度について述べる。

モデリング座標から膨張を行う座標系に変換した後、その座標系の \(x \) 座標を使用して膨張させる。

4 作画・評価

本章では前述の手法を用いた作画実験の結果を示す。
4.1 F1-car の誇張表現

図6、図9はシェーディングを施した3次元形状の原型である。このモデルを元に、誇張表現した作画例を図7、図8、図10、図11に示す。

図6は、(3)式を用いて投影させた画像である。図7は図6と同じ視点において、T1の誇張度を使用した画像である。誇張方向は視点方向で、誇張度を、k1 = 0.016 として出力した。図8は図6と同じ視点において、T3の誇張度を使用した画像である。誇張方向は視軸方向で、誇張度を、k2 = 0.016として出力した。

T1とT2との違いは、誇張方向への形状誇張度の差である。T1は誇張方向への形状誇張の増大はT2に比べて少ないが、誇張方向と逆方向への形状変化がT2よりも大きい。

T2においてはその逆のことがいえるので、注目点とモデルの存在位置によって、2式を使い分けることが重要である。

図6: F1-car の投影図1

図7: T1を用いた誇張例

図8: T2を用いた誇張例

図9: F1-car の投影図2

図10: 高速で走っている表現
図 9 と図 6 とは異なった視点からの投影図である。図 10、図 11 は図 9 を誇張投影した画像である。この手法は、視点方向に誇張させたとき、視点を近づけた印象を与える画像を生成するだけでなく、このような形状の動きの表現も行うことができる。図 10 は、高速に走っている車の雰囲気を表現しようとした例である。この例において、誇張方向は形状の真下の方向に向かう。

図 11 は、高速でコーナリングしている車の雰囲気を表現しようとした例である。誇張方向は、車からみて右側である。

図 10 においては誇張方向を真下にとることにより、F1 カーが高速走行のときのダウンフォースを表現した。図 11 においては遠心力の方向に誇張方向をとることにより、意図する表現画像が出力された。

4.2 線の誇張

図 12 は、稜線それぞれ体を誇張投影した例である。これは今までの例のように、頂点を誇張投影させた後に各々の頂点を直線で結ぶのではなく、各々の線をいくつかに分割して分割した点を誇張投影して表示することにより実現した。

5 誇張投影画像のための対話システム

前述したように、誇張方向には様々な方向が考えられ、雰囲気の伝わる最良の誇張度合を決定するためには試行錯誤が必要である。また、視点や注目点によっても誇張方向と誇張度合は変わってしまう。意図する雰囲気を表現するための対話システムが必要である。

経験が少ない作業者でも、誇張表現を容易に行なうことができるシステムを開発した。このシステムはアニメーションしながら入力を決定できるので、どの誇張度合が必要かをインタラクティブに作業を行なうことができる。
むすび

本論文では形状を誇張するための投影変換手法を提案するために、以下のことを行った。

1. 画面・イラストレータが形状を独自の手法で変形させているイラスト・絵画を分析した。

2. 誇張投影変換する手法を提案した。これは、様々な方向への誇張を実現するために、誇張を行う座標系を定義し、それを用いて誇張を行う手法である。

3. 線分をいくつかに分割し、それぞれの点ごとに誇張投影変換をかけることにより、線分自体を誇張投影した。

その結果、以下のことがわかった。

1. 視点方向に誇張させた場合、日を引くような画像の生成が可能となった。

2. 誇張の方向を変えることにより、形状の動きの表現を伝える画像を生成した。

3. 熟練した技術に頼っていた形状の効果的な誇張画像の自动生成が可能となった。

参考文献

