解説

三元系マイクロエマルションの圧力誘起構造相転移

Pressure-Induced Phase Transition in a Ternary Microemulsion System

長尾 道弘
Michihiro NAGAO

瀬戸 秀紀
Hideki SETO

The effects of temperature and pressure on the structural formations in a ternary microemulsion system were reviewed. From the static measurement by means of a small angle x-ray and neutron scattering, similar phase transitions with increasing temperature or pressure were observed. Introducing a normalized temperature and pressure, the similarity and dissimilarity of those two phase transitions were clarified. From the dynamic measurement utilizing neutron spin echo, it was demonstrated that the membrane dynamics at the high-pressure phase were completely different from the high temperature phase. These differences suggest differing mechanisms for the pressure-induced phase transition and the temperature-induced transition.

[small angle x-ray and neutron scattering, neutron spin echo, complex fluids, microemulsion, phase transition, dynamics]

1. はじめに

一般に不溶性の水と油に界面活性剤を混入すると、水/油間の高い界面張力を著しく低下させ、マクロに均一な液体を形成することは良く知られている。洗剤やシャンプーと言った日用品にこの現象は利用され、工業的にも重要な物質系である。

形成された液体内部では、水や油のドメインが界面活性剤膜によって隔てられ、セミマクロ構造を形成していることが確認されている。その為、物理的、特に秩序形成要因の観点からも興味が持たれ広く研究されている。この構造形成の要因は様々な相互作用の複雑な関係によって理解されると考えられるが、まだ不明確なことの多い研究分野である。このような系に力を加えることによって、これらの相互作用のうち、比較的弱いもの（親水性相互作用など）を強化させることができ、秩序形成要因の解明に不可欠な実験手段であることが、我々の研究からわかってきた。そこで、本稿ではソフトマターの物理学と圧力の関連について、我々の実験結果を例に取りながら紹介する。

2. マイクロエマルション

2.1 マイクロエマルションとは

伝統的なコロイド化学は近年物理性化学を含む広い意味でのコロイド科学として新たな局面を迎えている。コロイドとは物質中で原子、分子が集合し、nm ないしμm 程度の大きさを持つ微小集合体を形成し、ミクロに不均一な構造を持つ物質のことを指す[1]。コロイドは、牛乳やマヨネーズに代表される「エマュルション」が分類される。エマュルションは、内部構造の特徴的長さが光を散乱するほど大きい（数 μm 程度）ため白濁している。

一方、「マイクロエマルション」とは、この内部構造の特徴的な大きさが nm 程度と小さく、透明な液体の事を指す。例えば、水と油親媒性分子を混合すると、室温常圧近で熱力学的に安定で透明、均一なマイクロエマルションが形成されることが知られている。

本稿では典型的なマイクロエマルションを形成することができ知られる陰イオン性界面活性剤 AOT（dioctyl sulfoxuccinate sodium salt）水、デカンの三元系を取りあげる。この系では、水—油界面に AOT 分子が吸着し、親媒性分子膜が形成される。この AOT 膜によって隔てられた水、油のドメインがメソスコピックスケール（ミクロとマクロの中間）の構造を形成する。

〒319-1106 宮城県那珂郡東海村白方 106-1 東京大学物理研究所附属中性子散乱研究施設
Neutron Scattering Laboratory, Institute for Solid State Physics, The University of Tokyo 106-1 Shirakata, Tokai 319-1106
*〒398-8521 広島県東広島市熊山7-1-7 広島大学総合科学部
Faculty of Integrated Arts and Sciences, Hiroshima University, 1-1-1 Kagamiyama, Higashihiroshima 739-8521

高圧力の科学と技術 Vol. 11, No. 3 (2001)
Fig. 1 にメソソビックスケール構造のうち、典型的なものと思われる[2]。この相図は Gibbs 相図と呼ばれ、3 成分の混合比によって相構造が示される。三角形の各頂点はその成分が 100%存在していることに対応する。油の多い頂点では油中に両親媒性分子膜に被われた水滴が分散浮遊した水中水滴（water-in-oil droplet）構造を、水が多い頂点では逆に水中油滴（oil-in-water droplet）構造を形成しやすい。また、3 成分の存在比によっては、ラメラ構造（水相、油相が両親媒性分子膜を構成して構成する構造）も現れる。さらに、水相、油相はそれぞれ接続的で接するおり、その界面に両親媒性分子膜が吸着した双連続（bicontinuous）構造が現れるのみで特徴的である。

このように構造を形成する要因として、これまでの研究から考えられているものは大きく分けて 2 つある。そのうちの 1 つは成分比である。水が多ければ当然油を組みやすく、水面活性剤を用ければ、界面量が多くなり、複雑な、あるいはより秩序的な構造を形成しやすくする。そして 2 つめの要因として、両親媒性分子膜の自発曲率が重要である。自発曲率とは、Fig. 2 に示すように、水—油界面に吸着した両親媒性分子膜が油を隅りやすいのか（自発曲率 C < 0 と定義）、水を隅りやすい（C > 0）のか、あるいは平行（C = 0）にならないのかを示す量である。この自発曲率が温度や圧力と外因によって変化するため、様々な構造間の転移が引き起こされる。しかし、この自発曲率変化のメカニズム、となれば完全には明らかになっていない。

2.2 外因の効果
自発曲率の変化の仕組みを明確にするため、水と油の体積比を等しくする。これにより、成分比による影響を抑えられると考えられる。AOT 膜の室温常圧での自発曲率は正なので、20%程度の AOT と混合すると、濃厚な油中水滴構造を形成する事事が知られている[4-6]。この系の温度を上限させると、AOT 膜の自発曲率が変化し、ラメラ構造へ転移することが実験的に明らかにされている[7]。温度上昇によって、AOT 分子の親水基から Naイオンが解離され、それに伴い親水基間の静電力が大きくなる。その為、水を隅りでいき油はより平坦な膜を形成するようになると考えられる。従って、更に温度を上限させた場合、親水基間の斥力はより大きくなり、最終的には油相を取り囲んだ油滴構造を形成する[8]ようになることは容易に想像できる。

一方、圧力上昇の場合、温度上昇と同様にラメラ構造が現れるとある。と言う提案は Saito et al.によってなされている[9]。これは、圧力による変更を有目によって決定した結果、温度上昇による相変と圧力上昇による相変が非常に似ている為である。しかし、何故温度上昇と圧力上昇で同一相変が発生するのかについては、言及されていない。また、Easoe et al.による圧力効果の研究では[10]、高圧によって、AOT 分子の炭素水素鎖と油分子の相容性が変わるのであろうと述べられている。しかし、圧力効果として十分に意味を必要とされる議論はまだ十分ではない。その解釈は単純化しているのが現状である。

圧力効果を理解することは、メソソビックスケールの構造形成要因を理解する上で重要である。単純気体などの場合は加压により気体と同様の構造変化が起きることが一般的であるが、この AOT を含むマイクロエマルションでは、反対に加圧と昇温で同様の構造変化が示唆されている。このような事があらゆるのなのか、
それを明らかにするためには、圧力印加による構造変化のメカニズムを明らかにしなければならない。また、マイクロエマルションは微細構造のモデル系として捉えることができるので、膜構造に及ぼす圧力効果を理解することは深海生物の加圧応答についての理解を行う上で重要であると考えられる。

従って本稿では、メソコピック構造の解析に有効な x 線及び中性子小角乱乱計（SAXS 及び SANS）によって報的な構造と相の振舞いを明らかにする。また、中性子スピンエコー法（NSE）によって動的な構造を理解する。NSE では観の波状運動（時間尺度が ns 程度のダイナミクス）についての情報を得ることができる。これらの実験は、中性子散乱については原子力研究所構造 3 号炉に設置された東京物理研保有の装置、SANS-U（小角散乱）及び NIST-NSI（スピンエコー）を使用した。x 線小角乱乱は高エネルギー加速器研究機構の Photon Factory に設置された BL-15A を用いた。これらのダイナミックレンジはそれぞれ、SANS-U では \(\theta \leq 0.15 \text{nm}^{-1} \)、NSE では \(0.2 \leq Q \leq 1.3 \text{nm}^{-1} \)、\(1 \leq t \leq 15 \text{ns} \)、BL-15A では \(0.2 \leq Q \leq 2.3 \text{nm}^{-1} \)であった。

3. 実験結果及び考察

3.1 中性子小角散乱

SANS 実験を行うため、20 mm 厚のサファイアを対向させて構成し高圧力容器を用いた[11]。この圧力容器は耐圧 200 MPa、測定温度範囲を室温から 150°C 程度まで設定されている。

Fig. 3 は界面活性剤の体積分率 \(A = 0.230 \) の試料についての中性子小角散乱の圧力依存性である[12-14]。ここで、横軸 \(Q \) は散乱による運動量遷移で、入射ビーム波長 \(\lambda \)、散乱角 \(\theta \) を用いて、\(Q = 4\pi\sin\theta/\lambda \)と表される。Fig. 3(a)及び(b)は試料上部及び下部それぞれに中性子を照射したときに得られた散乱である。試料上部、下部共に観測される \(Q \sim 0.05 \text{A}^{-1} \) の幅の広いピークは、低圧 \((P \leq 40 \text{MPa}) \) における 1 相の濃厚油中に水滴構造に由来する相関ピークである。圧力上昇に伴い、このピークは次第に強度を減じる。試料下部（Fig. 3(b)）では、\(P \sim 40 \text{MPa} \) 付近から \(Q \sim 0.08 \text{A}^{-1} \) 付近に新しいブロッキングピークが現れ始め、圧力上昇によるラメラ構造の発現を示している。一方、試料上部（Fig. 3(a)）からはラメラのピークは観測されない。この結果は、圧力上昇によって、濃厚油滴構造からラメラと双連続への 2 相分離が引き起こされたことを示している[14]。ラメラ相は AOT と水を、双連続相は油を多く含むため、重力により上下 2 相に分けるものと考えられる。

Fig. 3. Pressure dependence of SANS profile of AOT / D_{2}O / n-decane system at (a) the upper part of sample and (b) the lower part. Solid lines are fitting result to the Teubner and Strey model[17] and the model proposed by Nallet, Roux and Milar[18]. The inset figures indicate temperature dependence of SANS profiles at (a) the upper part and (b) the lower part, respectively.

これはエマルション系においては一般的な現象である。従って、Saidi et al.[9]が示した依存性は、ラメラ構造であるが、2 相分離で現れることが明らかになった。また、Fig. 3 のそれぞれに示された挿入図は温度変化による中性子小角散乱の変化の様子である。圧力の影響に同様な試料下部ではラメラ構造が現れ、上部には現れない。高温の試料上部で、\(Q \sim 0.05 \text{A}^{-1} \) 付近に新たなピークが現れるが、これは高温の水中油滴構造に由来するピークを示している。

このように、AOT/water/n-decane 系マイクロエマルションでは、温度上昇、圧力上昇共に 1 相の油中水滴構造から 2 相構造への相転移が見られることが明らかになった[15,16]。また、高温域（7 〜 79°C）で現れる水中油相は、圧力誘起転移で我々の到達した最高圧力（約 121 MPa）においても見られず、温度誘起転移に特有の現象であると考えられる。

3.2 SANS データ解析モデル

高圧力の科学と技術 Vol. 11, No. 3 (2001)
薄水滴あるいは双連続構造から得られた中性子小角散乱は、Teubner and Streyl[17]によって提案されたモデルを用いて説明を試みた。彼らは、系を連続媒体と見なし、系の秩序変数として局所的な水と油の密度差 \(\Delta \rho \) を導入した。空間が水によって占められているとき \(\Psi = 1 \)、油によって占められているとき \(\Psi = -1 \)、界面活性剤によって占められているとき \(\Psi = 0 \) と考え、Ginzburg-Landau の自由エネルギー展開から、次のようないろ散乱関数が導かれた[17]。

\[
I_{TS}(Q) = \frac{8\pi \langle \eta \rangle / \langle S_{TS} \rangle}{[k_{TS}^2 - 2(k_{TS}^2 - 5\rho)^2]} - \frac{\langle S_{TS} \rangle - 2(k_{TS}^2 - 5\rho)^2}{\langle S_{TS} \rangle}. \tag{1}
\]

ここで、\(k_{TS} = 2\pi n_{TS} \) 及び \(\xi_{TS} \) は水ドメインの空間分布に特徴的な波数及び相関距離を、\(\langle \eta \rangle \)は平均不乱散乱振幅密度を示すそれぞれのもの。また、\(d_{TS} \) は水ドメインの平均硬さ及び周期である。このモデルは系を連続媒体と見なし、薄水滴構造と双連続構造を区別しない。従って双連続から、水滴がはっきりしない系に対しても適用するモデルである。

一方、ラメラ構造から得られる散乱については、Nallet, Roux et al.[18]によって提案されたモデルを用いる。このモデルでは、散乱に寄与する項として 2 つの要素を考える。一つは界面活性剤の濃度場より、もう一つはラメラ膜の密度場に伴う項である。前者は \(Q = 0 \)、後者は有限の \(Q (\neq 0) \) を中心とするレーガン化関数でそれぞれ示される。そこで彼らはこれからの和

\[
I_{lam}(Q) = \frac{l_0}{Q^2 + l_1^2} + \frac{l_2}{Q^2 + l_3^2 + 1}. \tag{2}
\]

として、ラメラ構造の散乱関数を求めた。\(l_1, l_2, l_3 \) はそれぞれ界面活性剤の濃度場及びラメラ膜の密度場からの散乱強度、\(\xi_{lam} \) 及び \(Q_{lam} \) はそれぞれ両側スケールの濃度場及びラメラ膜の空間的な相関距離及びプラグ散乱の 1 次ビーグ位置を示す。また、ラメラ膜間距離 \(d_2 = 2\pi/Q_{lam} \) である。以上の散乱関数を用いたフィッティングは Fig. 3 の実験で示したように、結果をよく説明できた。

3.3 繰り返し周期の変化

Fig. 4 は、実験結果を得た周期の (a) 压力依存性及び (b) 温度依存性である。Fig. 4(a)に見られるように、すべての測定した組成において、圧力上昇に伴い \(P \leq P_c \) の圧力範囲での \(d_{TS} \) は減少する。その後、試料下部にラメラ構造が現れることに伴い、\(d_{TS} \) は大きくなり、\(P \geq P_c \) ではほぼ一定の値になる。ここで、\(P_c \) 及び \(P_1 \) はそれぞれ転移開始及び転移終了圧力として定義した。また、Fig. 4(b)のように、温度上昇に対しては、\(T < T_c \) では \(d_{TS} \) は小さくなり、\(T \to T_c \) でラメラ構造が現れる事に伴い \(d_{TS} \) は大きくなる。\(T > T_c \) では高温における水滴蒸発の成長に伴い、\(d_{TS} \) は小さくなり、最終的に無相に依らない一定値に近づく。ここで、\(T_c \) 及び \(T \) はそれぞれ転移温度及び上昇温度として定義した。ただし、\(d_{TS} \) は、圧力上昇では高温で一定値であるが、温度上昇に対してはすべての温度範囲で徐々に変化している。

温度変化による転移と圧力変化による転移の違いを明確にするため、換算温度 \(T \) 及び換算圧力 \(P \) をそれぞれ

\[
\hat{T} = \frac{T - T_c}{T - T_0},
\]

及び

\[
\hat{P} = \frac{P - P_c}{P - P_0},
\]

として定義した[16,19]。ここで、\(T_c \) 及び \(P_c \) は常温（25℃）及び常圧（0.1 MPa）である。\(\hat{T} \) 及び \(\hat{P} \) を定

Fig. 4. (a) Pressure dependence of the mean repeat distance \(d \) of the droplet phase, \(d_{TS} \), and the lamellar phase, \(d_{lam} \). The transition start pressure \(P_c \) and finish pressure \(P_c \) were determined. (b) Temperature dependence of \(d_{TS} \) and \(d_{lam} \). The lower transition temperature \(T_c \) and the upper transition temperature \(T_c \) were determined.
Fig. 5. Normalized temperature (\bar{T}) and pressure (\bar{P}) dependence of the mean repeat distance of water domains. The superscript T and P indicated that the values were observed from the temperature variation experiment and pressure variation, respectively. Experiments on three samples with the volume fraction of amphiphile a) $\phi_i = 0.208$, b) $\phi_i = 0.224$, and c) $\phi_i = 0.230$ were carried out. \bar{T} and \bar{P} dependences of the d_{15} below $\bar{T} = \bar{P} = 0$ were completely the same for all the samples. On the other hand, \bar{T} and \bar{P} dependences of d_{15} above $\bar{T} = \bar{P} = 0$ were different because subsequent phase transition was observed only for temperature variation. The temperature dependence of d_{15} and the pressure dependence of d_{15} were quite different above $\bar{T} = \bar{P} = 0$. With increasing temperature the d_{15}^T continued to change, however, with increasing pressure d_{15}^P became constant at high-pressure region.

3.4 X線小角散乱

SAXS測定に用いた高圧力容器は、窯形として0.5mm厚、2.5mm直径のダイアモンド2枚を対向させて製作され、耐圧は100MPaの設計である[20]。

SAXS測定によりFig. 6に示すような散乱関数の圧力依存性が得られた[21]。圧力上昇に伴う散乱関数の変化の仕方はSANSによって得られた結果と同様であるが、SAXSでは水ドメインの相関だけでなく両親媒性分子間の相関が散乱に寄与するため異なる散乱を与える。

この散乱関数を説明するため、Schulzサイズ分布を持つ、多重散乱体寸法の形態因子 $P(Q)[22]$ と短距離引力ポテンシャルのある剛体球間の構造因子 $S(Q)[23]$ を用いて解析を行った。これらの関数は表記が複雑なため、それぞれの文献を参照された。$P(Q)$は、平均の水滴半径 R, (水滴半径の平均値) と多重散乱性に関係するパラメータ Z を用いて記述される。$S(Q)$は剛体球の半径 R (水滴中心と両親媒性分子の適水基までの距離)、剛体球表面間に働く粘着性の引力ポテンシャル

Ω. ポテンシャルの有効距離ϵ及び水滴濃度ϕがフィッ
ト変数として含まれる。また、高圧で現れるラメラ構造については、SANS と同様に Nallet らの表式（2）を用いた。さらに、両親媒性分子の濃度ゆらぎの相関を示すため、$Q = 0$ を中心とするローレンツ関数をすべての散乱関数に対して仮定してフィッティングを行った。得られた結果は Fig. 7 に示すように、各相における実験結果をよく説明している。この結果得られたフィット変数は水ドメイン間距離やラメラ膜間距離の圧力依存性に関する SANS の結果と一致している [21]。

得られたフィット変数のうち、温度効果と圧力効果を顕著に現していると考えられる結果として、Fig. 8 に水核半径 R_c の温度、圧力依存性及び Fig. 9 に水滴間引力ポテンシャル Ω の温度、圧力依存性をそれぞれ示す。圧力上昇に伴い、R_c はほとんど影響を受けず一定値を取るのに対し、温度上昇につれて R_c は小さくなっていく様子がわかる（Fig. 8）。このことは温度上昇と圧力上昇によって効果を受ける部位が異なっている事実を示している。一方、Fig. 9 から明らかのように、圧力上昇に伴い $P - P_c$ と 20 MPa では水滴間引力が増大し、この引力の増大によって相移が誘起されていると考えることができるのに対し、Ω に顕著な温度依存性はない。これらのことは、温度効果と圧力効果が全く同じではなく、異なったメカニズムによって相移が誘起されていることを示唆している。

3.5 中性子スピンコンター

NSE は、数 ns 程度のダイナミクスを知ることができる測定法である [24-27]。この方法は、試料容器内に非磁性流体で、試料容器には非磁性体を使用するため、磁場の影響を受けない。SANS 用高圧容器を非磁性体のステンレス用いて改善し、NSE 測定に用いた。

Fig. 10 に常温常圧で得られた中間相関関数 $\chi(Q)$ の
様子を示す。従来の薄層中水滴系では、単純な指数関数によって緩和曲線を記述できることが知られている[28,29]。濃厚水滴系におけるNSE測定は、これまでほとんど行われておらず、Sheu et al.[30]による測定のみが知られているに過ぎない。

Zilman and Granek [31]の膜の運動を記述するモデルによると、次元のダイナミクスを示す時間空間関数は指数関数的形式で表され、

\[\eta(Q,t) = \eta(Q) \exp\left[-(t/T)^\gamma\right] \]

(5)

さらに、緩和率が

\[\gamma = 0.025 \left(\frac{b_0 R}{K} \right)^{1/3} \frac{b_0 R}{\eta} \]

(6)

となる。ここで、\(\gamma = 1 \) としてよく、\(\eta \) 及び\(b_0 \) はそれぞれ溶液の粘性係数、膜の曲げ弾性率である。最近、武田ら[32-38]はZilman and Granekモデルがマイクロエマション系で成立することを示し、さらに得られるダイナミクスはコントラストやメソスコピック構造に依らないことを示した。

彼らに従い、Zilman and Granekモデルを用いてNSEデータの解析を行った結果[16,19,39]。Fig. 11 に示すような緩和率の \(Q \) 依存性が得られた。直線は \(Q \) を示している。図中HTは高圧相（\(T = 40^\circ C, P = 0.1 \)MPa）を、RTPは室温常圧相（\(T = 25^\circ C, P = 0.1 \)MPa）を、さらにHPは高温相（\(T = 24^\circ C, P = 60 \)MPa）をそれぞれ示している。HTにおける\(\gamma \) は明らかにRTPやHPにおける\(\gamma \)より大きくなっている。この結果から得られた膜の曲げ弾性率\(b_0 \)をTable 1にまとめた。この結果は、高圧相では常温相に比較してAOT膜が軟らかく

Fig. 11, Obtained decay rate \(\gamma \) at various conditions. Solid straight lines indicate the fit results to eq. (6).

なっていること、高圧相では硬くなっていることを示しており、温度上昇と圧力上昇での相転移メカニズムの違いを反映しているものと考えられる。

このように加圧と昇温では、見かけ上似たような構造相転移を示し、転移過程の振舞いも似ているが、SAXSやNSEによって得られた結果からは、いくつかの特異性が異なっている事が結論づけられた。これらのは違いは、ミクロスケールでの構造相転移のメカニズムが異なっていることに起因していると考えられる。

<table>
<thead>
<tr>
<th>(\kappa(HT)/k_0)</th>
<th>(\kappa(RTP)/k_0)</th>
<th>(\kappa(HP)/k_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.4</td>
<td>1.4</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Table 1. The bending modulus \(\kappa \) of AOT membrane obtained from NSE measurements. With increasing temperature, the membrane became flexible, on the other hand, it became rigid with increasing pressure.

4. おわりに

最初に述べたように、マイクロエマションの秩序形成要因についての研究はまだ歴史が浅く、明らかにまっていない点も多い。特に電気基質のいわゆる「電気性相互作用」については、これらの系の構造形成に重要な役割を果たしていることが明らかであるにも係わらず、その実体はよくわかっていない。このような中で、加圧により、とりわけ温度上昇と比較することによりその振舞いと構造形成に対する役割を明らかに来たことは、本研究の重要な成果であるといえるのではなかろうか。そして、これらエマション系の圧力下での振舞いの研究を進めることにより、食品加工や漬漬生物の圧力応答など、複雑な系に対する圧力効

高圧力の科学と技術 Vol. 11, No. 3 (2001)
果の解明にも貢献するのではないだろうか。この研究結果が、今後のこの分野の発展に繋がることを期待して、この稿を閉じたい。

謝辞

本論で述べた実験のうち、中性子スピンエコー実験に際し、広島大学武田隆義助教授、川端庸平氏に多くなるご支援を頂きました。SAXS 実験では、現役先端大学院大学上久保裕生博士に大変お世話になりました。圧力容器はすべて光圧圧機器 (株) 小泉光男社長に製作いただきました。また、広島大学好村洋治名誉教授に終始が有り質な議論を頂きました。本稿の執筆にあたり広島大学佐藤雅助教授に多くのご助言を頂きました。多くの方々のご支援の下に本研究が遂行できたことを深く感謝いたします。

参考文献

【2001 年 5 月 18 日受理】