SLCP（短寿命気候汚染物質）による陸域水循環への影響

東京大学生産技術研究所　新田友子，芳村圭，木口雅司
東京大学大気海洋研究所　鈴木健太郎
九州大学応用力学研究所　竹村　俊彦

短寿命気候汚染物質（SLCP; Short-Lived Climate Pollutants）は、大気中での寿命が数日から数十年と比較的短く、気候を温暖化する効果を持つ物質である。これらは、大気汚染物質として、健康や農業、生態系への悪影響も合わせ持つ（Climate and Clean Air Coalition より）。気候変動に関する政府間パネル第5次評価報告書では、SLCPに含まれるメタンやエアロゾルの影響が評価され、大気質改善と気候変動の関係も取り上げられている。また、COP21（気候変動枠組条約第21回締約国会議）でも SLCP削減に向けた取り組みが議論されている。SLCP削減を通じた地球温暖化緩和策は世界的に注目されている。その効果は未解明な部分が多く、特に降水量や気温の変化に伴う水資源の変化や洪水・渇水といった水災害への影響まで見落としている研究が未だかつてない。本研究では、SLCPのひとつである黑色炭素（BC; Black Carbon）の陸域水循環への影響を調べることを目的とする。さらに、寒冷化の効果を持つ短寿命の大気汚染物質である硫酸塩の影響についても調べる。また、これらの水資源への影響評価の第一段階として、水ストレス人口の変化についても評価する。

陸域水循環への影響を調べるために、地球エアロゾル気候モデル MIROC-SPRINTARS（Takemura et al., 2005）による現在気候実験と、BCと硫酸塩の前駆気体である SO₂をそれぞれ0.5, 2, 5, 10倍に変化させた実験の結果を用いる。気候モデルの出力結果は系統的なバイアスを持つことが知られており、水資源や水災害への影響を評価する場合、その影響を受ける可能性がある。そのため本研究では、将来の早魃変化に関する研究（佐藤, 2014）で用いられた手法に倣い、バイアス補正した気象情報データを作成し、陸面モデル MATSIRO を用いた陸面オフライン実験を行った。モデルに入力する変数は、風速、気温、比湿、地表面気圧、下向き短波・長波放射、雲量、降水、ダスト・黒色炭素の沈着量である。まず、MIROC-SPRINTARS の出力を、T85 から 1 度解像度に空間内挿し月単位の気候値を計算した。その上で、JRA25 再解析と GPCC 降水量から作成されたデータセット(Kim et al, 2009)に、気候値の差や比を乗じた。バイアス補正の対象とする変数数、降水、気温、下向き長波放射、比湿である。風速、地表面気圧、下向き短波放射、雲量は Kim et al. (2009)のデータをそのまま用いた。BC10 倍実験のみ、融雪過程への影響は BC 沈着量を 10 倍にする実験も行った。境界条件と土壌・土地利用に関するパラメータは GSWP2（Dirmeyer et al., 2006）で作成されたデータを用いた。対象は 1981-2000年の20年間とし、全部で10種類の実験を行った。

図1: BCと硫酸塩の変化による全球陸域平均の a) 流出量 (kg/m²/s) と b) 蒸発散量 (W/m²) の変化。
横軸が全球平均気温 (K)、縦軸が全球平均降水量の変化 (mm/day) で、丸が BC、四角が硫酸塩。
図1 に全球域域平均蒸発散量と流出量への影響を示す。降水量、気温の変化との関係を見るために、横軸に全球平均の気温変化、縦軸に降水量変化を取り、蒸発散量と流出量の変化を色で示している。MIROC-SPRINTARS の感度実験の結果から、BC と硫酸塩の変化は降水量と気温の変化に異なる影響を及ぼすことがわかる。まず BC については、BC が増加するほど、気温は上昇し降水量は減少していることがわかる。蒸発散は BC 増加とともに減少傾向が見られるが、流出量には線形的な変化は見られなかった。次に硫酸塩については、硫酸塩が増加すると気温と降水量が減少し、流出量も蒸発散量も減少する結果となった。流出量変化の空間分布を見ると（図2，紙面の都合上 BC10 倍実験のみ）、BC と SO2 それぞれの排出量倍率を変えると、変化が見られず、増加・減少する場所の空間分布はあまり変化しなかった。一方で、BC と硫酸塩では空間分布が異なった。SO210 倍実験は、温暖化実験に比較的近い分布をとり、ユーラシア東部や東南アジア、アフリカ中央部で減少し、ヨーロッパやアメリカ合衆国で増加していた。BC10 倍実験は、より地域的な変化が大きかった。これは、降水量変化の空間分布を反映しているが、乾燥地域では降水量変化が蒸発散量変化に影響する場合が多く、比較的湿潤な地域の方が、影響が大きくなる結果となった。

次に、入手可能な水資源量への影響を調べるために、高い水ストレス下にある人口の変化について調べた。水ストレス指標として、一人当たりの水資源賦存量 Q/C を用いる。Shen et al. (2014) に従って、Q/C を計算し、4 種類に分類した。水資源賦存量は流域・年平均流出量を用い、人口データとして Bengtsson et al. (2006) の 1990 年のデータを用いた。コントロール実験の結果を Shen et al. (2014) と比較すると、メキシコや中東、中国の一部で高くなる点は一致するが、アフリカで全体的に水ストレスが高くなった（図3）。これは、Shen et al. (2014) と用いた流出量データ・期間が異なるためだと考えられる。BC・硫酸塩を変化させた各実験について、同様に水ストレス指標を計算し、高い水ストレス下（Q/C<1000 m³/year/c と定義）にある人口の変化を見積もった。結果を図4に示す。BC0.5 倍の場合には、0.5%程度減少し、2 倍、5 倍では同程度増加、10 倍実験では 2%程度増加するという結果となった。10 倍実験に関しては、沈着量を 10 倍にした実験も行ったが、全球スケールで見ると 10 倍実験との差は小さかった。硫酸塩に関しては、流出量変化で見られたような線形的な変化は見られなかった。5 倍実験では、主にインド北部での増加と地中海の北東側から西アジアにかけての減少が相殺し、ほとんど変化が見られなかった。Q/C の分布は人口分布に大きく依存し、流出量が変化している地域でも、Q/C は変化しない流域も多かった。今後の課題として、洪水・洪水イベントといった水災害に関する評価が挙げられる。

キーワード：短寿命気候汚染物質、陸域水循環、水ストレス影響評価

図2：BC10 倍実験の流出量の変化 (mm/year)
図3：CTL 実験の Q/C。赤色が濃いほど、水ストレスが高い
図4：高い水ストレスを受ける人口の変化（%） a) BC, b) 硫酸塩