日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
密行列固有値解法の最近の発展(I) : Multiple Relatively Robust Representationsアルゴリズム(<特集>行列・固有値問題における線形計算アルゴリズムとその応用)
山本 有作
著者情報
ジャーナル フリー

2005 年 15 巻 2 号 p. 181-208

詳細
抄録

The Algorithm of Multiple Relatively Robust Representations (MR^3) is a new algorithm for the symmetric tridiagonal eigenvalue/eigenvector problem proposed by I. Dhillon in 1997. It has attracted much attention because it can compute all the eigenvectors of an n×n matrix in only O(n^2) work and is easy to parallelize. In this article, we survey the papers related to the MR^3 algorithm and try to present a simple and easily understandable picture of the algorithm by explaining, one by one, its key ingredients such as the relatively robust representations of a symmetric tridiagonal matrix, the dqds algorithm for computing accurate eigenvalues and the twisted factorization for computing accurate eigenvectors. Limitations of the algorithm and directions for future research are also discussed.

著者関連情報
© 2005 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top