日本応用数理学会論文誌
Online ISSN : 2424-0982
ISSN-L : 0917-2246
Pade近似を用いた数値等角写像計算のArnoldi法による精度改善(行列・固有値問題の解法とその応用, <特集>平成17年研究部会連合発表会)
呂 毅斌伊東 拓伊藤 祥司櫻井 鉄也
著者情報
ジャーナル フリー

2005 年 15 巻 3 号 p. 495-508

詳細
抄録
In this paper, we consider a method for computation of numerical conformal mappings using Pade approximation. This method calculates the poles of the denominator of a Pade approximation as charge points, using the results obtained by the charge simulation method proposed by Amano et al. Although good accuracy of numerical conformal mapping can be obtained using a few charge points, the accuracy is degraded when a certain number of charge points is exceeded. In order to improve the accuracy of this method, we reduce calculations of charge points by Pade approximation to a generalized eigenvalue problem. Moreover, we construct a highly accurate unitary matrix to appear in this generalized eigenvalue problem using the Arnoldi method. Some numerical examples illustrate the efficiency of the improved method.
著者関連情報
© 2005 一般社団法人 日本応用数理学会
前の記事 次の記事
feedback
Top