総 説

ホスホジエステラーゼ III阻害薬の先行療法（preemptive therapy）—その有効性と安全性—

木倉 睦人*1 板垣 大雅*1 佐藤 重仁*2

要約：ホスホジエステラーゼ（phosphodiesterase, PDE） III阻害薬（ミルリノン、アミリノン、オルリノン）は急性心不全の治療薬として注目されている。陽性収縮作用と血管拡張作用を
併せ持つ特殊性から、カテコラミンや血管拡張薬とは違った観点で投与の用量、方法、時期、有
効性や安全性に関する再検討がなされ、筆者らは先行療法（preemptive therapy）という新しい
治療概念を提唱してきた。PDE III阻害薬の先行療法とは、心室血管外科手術における受容
体のdownregulation、炎症反応、再灌流傷害が生じる前から先行投与を開始し、体外循環離脱
後の循環動態の至適化（hemodynamic optimization）と酸素需要バランスの適正化を図りなが
ら、低心拍出量や栄養代謝の亢進などのリスクを減らし、患者の状態をより効果的な先行療法
（preemptive zone）へと導する治療である。この治療概念は、炎症反応や再灌流傷害が生じる大
血管の進展や門脈移植の分野にも応用できると考えられる。また、安全性の確保のために今後
も慎重に研究を重ねていく必要がある。

Key words: ①phosphodiesterase III inhibitor, ②preemptive therapy, ③hemodynamic optimi-
zation, ④reperfusion injury, ⑤cardiovascular surgery

Ⅰ．緒 言

ホスホジエステラーゼ（phosphodiesterase, PDE） III阻害薬は、強心・血管拡張作用（ino-dilator）を持つ心
不全治療薬として開発され、初期には循環器領域にお
いて、最近は周術期・集中治療医学の領域で幅広く使
用されるようになり、特に心室血管外科手術後の
急性心不全治療薬として注目されている49-108。筆者ら
は、PDE III阻害薬の効能を十分に活かす周術期の対応
法を探りながら、PDE III阻害薬の先行療法（preemptive
therapy）という新しい治療概念を提唱してきた19-220。
今回、PDE III阻害薬の先行療法の有効性と安全性につ
いてまとめ、考察した。

Ⅱ．PDE III阻害薬の薬理

PDE は、心筋や血管平滑筋の他、血小板、肝臓、気
管支、肺などの全身臓器に広く分布する酵素で、テオ
フィリン、アミノフィリン、塩酸パリベリンは非特異
的な阻害薬である。精製過程より、PDE I～X までア
イソサイム（同一酵素）が報告されているが、PDE III
は、環状グアノシン 3’ 5’ 一磷酸（cyclic guanosine
monophosphate, cGMP）により阻害されるが、環状
アデノシン 3’ 5’ 一磷酸（cyclic adenosine monophos-
phate, cAMP）を特異的に加水分解し、5’ 一磷酸
（5’ adenosine monophosphate, 5’ AMP）に代謝す
る23。ミルリノン、アミリノン、オルリノンは、この
PDE IIIの酵素活性を特異的に阻害し、cAMPの代謝を選
択的に遅延させる。心筋細胞において（Fig. 1）、PDE III
選択的に阻害され なおAMPの濃度が増加し、cAMP
に特異的なprotein kinase A の活性が上昇してアクト
チン、ミオシン、トロポニン複合体などからなる心筋の
興奮収縮連関にCa2+の供給が促進され、心筋の収縮力
が高まる。一方、末梢血管の平滑筋細胞でcAMPが増
加すると、筋小胞体へのCa2+の取り込みが促進されて

*1 県西部病院医療センター麻醉科（☎ 432-8580 静岡県浜松市駿府町 328）
**1 浜松医科大学麻醉・蘇生学教室（☎ 431-3192 静岡県浜松市長田山1-20-1）
受付日 2006年 3月 15日
採択日 2006年 11月 22日

- 151 -
末梢平滑筋が弛緩し、血管が拡張する。β受容体刺激薬とは異なるこれらの特徴が大きな利点になると考えられる。

Ⅲ. β受容体のdownregulationとPDEⅢ阻害薬

慢性うっ血性心不全では、β受容体のdownregulationにより受容体密度が減少し、カテコラミン反応性も低下することが知られている26). 慢性うっ血性心不全ではβ₁-受容体密度が減少し、β₂-受容体密度はほとんど変わらないが、β₁、β₂-受容体のどちらにおいても、反応性は有意に減少している（Fig. 2a）。

また、体外循環中から体外循環終了後にかけてβ₁、β₂-受容体密度が減少し、特に体外循環中にはβ₁、β₂-受容体の反応性も低下している（Fig. 2b, c, d）28). 慢性うっ血性心不全を伴った患者では、体外循環中から手術終了後にかけてさらにβ受容体のdownregulationが進行すると考えられる。

心機能が比較的良いなら、β受容体のdownregulation終了後は心収縮力が数時間のうちに低下し、8～24時間で徐々に回復することが知られており、その原因として再灌流障害、炎症反応、β受容体のdownregulationなどが考えられる29). 術前に体外循環のlow output syndromeに陥る危険性が高まる。このような術後の心不全に陥りやすい患者やカテコラミンに対するβ受容体の反応性が低下している状態において、十分な陽性変力作用を期待できることがPDEⅢ阻害薬の利点と考えられる。

さらに、β受容体阻害薬が慢性的に投与されている状態でも、PDEⅢ阻害薬による心機能や循環動態の改善が示唆されている21,22).

Ⅳ. PDEⅢ阻害薬の先行療法の有効性

1) 薬理動態と効果

（pharmacokinetics, pharmacodynamics）

筆者らは、心臓血管外科手術におけるミルリノン、アムリノンの薬物動態とその効果について調べてきた。それらの知見を以下にまとめてみよう。

アムリノンを体外循環終了後に投与した後の血中濃度の変化を調べると、アムリノンの半減期は3時間であった。慢性心不全の患者で得られた有効血中濃度1.5 μg·ml⁻¹を維持するには、1.5 μg·kg⁻¹の単回投与量に続いて10 μg·kg⁻¹·min⁻¹で持続投与することが必要とされ、体外循環離脱後にその回投与量と持続投与量を維持すると、有効血中濃度の1.5 μg·ml⁻¹が維持された12,33).

ミルリノンを体外循環終了後に投与した後の血中濃度の変化を調べると、ミルリノンの半減期は1.5時間であった。有効血中濃度の150 μg·ml⁻¹を維持するには、50 μg·kg⁻¹の単回投与量に続いて0.5 μg·kg⁻¹·min⁻¹で持続投与することが必要とされ、実際に体外循環離脱後にその回投与量と持続投与量を維持すると有効血中濃度の150 μg·ml⁻¹が維持された8,12,30.)

アムリノンの単回投与量を、体外循環離脱直後に心疾患が22 f·min⁻¹·m⁻²以下の患者において投与する
Fig. 2 Downregulation and desensitization of β-receptors
(a) Selective β₁- and β₂-adrenergic stimulation.
(b) Summary of the proposed effects of cardiopulmonary bypass (CPB) on cardiac β-adrenergic receptors (β-AR).
(c) Downregulation of cardiac β-adrenergic receptors (β-ARs) after CPB.
(d) Desensitization of cardiac β-adrenergic receptors during CPB.
β₁- and β₂-receptor adenosine cyclase responses reduce in failing ventricular myocardium in humans (a), and observations following cardiopulmonary bypass in canine model indicates the effects of cardiopulmonary bypass on β-adrenergic receptors (b) including downregulation (c) and desensitization (d) of β₁- and β₂-receptors.
CPB, cardiopulmonary bypass; BX, biopsy.
(a) Source: Reference 23. Bristow MR, Hershberger RE, Port JD, et al. Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation. 1990;82:12-25. (Fig. 8)
(b : Fig. 6, c : Fig. 4, d : Fig. 5)

と、心拍数は10分後に心機能が良好な患者と同等まで改善した10。

ミルリシンの単回投与量を体外循環離脱直後に投与すると、10分以内に心拍数が増加し、ミルリシンの血中濃度と心拍数の変化率が一致した結果から、有効血中濃度（ED₅₀）は150 ng·mL⁻¹であることがわかった（Fig. 3a, b）8,10）。左室心内膜周囲の収縮速度を心拍数で正確に反映するとともに、投与開始から10分以内に、ミルリシン群で有意に増加が認められ、この間の左室収縮期の応力に有意な変化がなかったが、血中濃度と心拍数の増加率の増加率を考慮すると、有効血中濃度は150 ng·mL⁻¹であることがわかった（Fig. 3c, d, e）8,10）。末梢血管抵抗係数は、ミルリシン群で10分以内に有意に低下した（Fig. 3f）。以上の結果より、心臓手術患者においてもPDE III阻害薬の強心・血管拡張作用が確認された。

2) PDE III阻害薬の投与法および時期の再検討

カフェイン製剤や血管拡張薬は、体外循環離脱後から開始し、循環動態を観察しながら増減していくのが一般的な方法である。しかし、体外循環離脱時は循環血液量の減少、末梢血流の拡張、頻脈などにより血圧がより低下しやすい状態にあり、プロテミンの投与時期をも重なるため、血管拡張作用があるPDE III阻害薬の単回投与量を急速に投与すると循環動態がより不安定になりがちである47,38）。そこで、カフェイン製剤や血管拡張薬と違ったアプローチからPDE III阻害薬の効果的な使用法を検討する必要性が示唆された。ちなみに、プロテミンよりも副作用の少ないヘリン拮抗薬の開発もなされてきたが39-41），今後はプロテミンに代わる抵抗薬は完成されていない。

まず投与法に関して、筆者らはアミリシンの血中濃
Fig. 3 27度と心収縮力や血圧低下に関したシミュレーションを行った。アミリノの単回投与量を15～20 mg·kg⁻¹を1分で投与した時は、平均血圧は15%ほど急激に低下するが、10～15分かけて投与した時は、血圧の低下が8%程度に抑えられる（Fig. 4b）。

度と心収縮力や血圧低下に関したシミュレーションを行った。アミリノの単回投与量を15～20 mg·kg⁻¹を1分で投与した時は、平均血圧は15%ほど急激に低下するが、10～15分かけて投与した時は、血圧の低下が8%程度に抑えられる（Fig. 4b）。心収縮力の変化をみると、アミリノの1回投与を1分間、15分間、15分間のいずれで投与した場合、10～15分後
PDE III阻害薬の先行療法　一有効性と安全性一

Fig. 4 Pharmacological simulation of amrinone
(a) Simulation of amrinone plasma concentration.
(b) Simulation of mean blood pressure.
(c) Simulation of the changes in myocardial contractility.
(d) Simulation of the changes in myocardial contractility.
(e) The changes in myocardial contractility and blood pressure versus amrinone plasma concentration.

Pharmaco-kinetic and -dynamic simulation model of amrinone plasma concentration(a), mean arterial blood pressure (b), and myocardial contractility (c, d) in the various dose and speed of amrinone administration. The relationships between amrinone concentration and the changes in myocardial contractility and mean arterial blood pressure are shown (e).

には心収縮力の増加は最大に達する(Fig. 4c)。また、アミリノの単回投与量の半分でも、心収縮力が15〜30%増加する(Fig. 4d)。さらに、アミリノの血中濃度と心収縮力および平均血圧の変化率は異なり(Fig. 4e)。血中濃度が約4 μg·ml⁻¹で心収縮力の増強作用は最大になるが、血圧低下は約7 μg·ml⁻¹で最大となる。つまり、単回投与量を15〜20分で緩徐に投与しても、血圧の低下を抑えながら十分に心収縮力を増強させることが可能であり、単回投与量の半分でも15〜30%の強心作用が得られる。

次に、筆者は、PDE III阻害薬の投与時期とその結果について的再検討を行った。PDE III阻害薬の投与開始時期を動脈灌流切断時とした理由は、①再灌流された心筋にPDE III阻害薬が最も早く到達し、②休外循環離脱まで呼吸、循環状態を整える時間的余裕が十分である、③術後の心機能の低下に先行する治療を開始で
Fig. 5 Hemodynamic effects of preemptive therapy
Changes in heart rate (a), mean arterial pressure (b), cardiac index (c), stroke volume index (d), pulmonary artery occlusion pressure (e), and systemic vascular resistance index (f) in preemptive therapy of milrinone or amrinone group.
B1, after anesthetic induction; B2, before cardiopulmonary bypass.
Source: Reference 21. Kikura M, Sato S. The efficacy of preemptive Milrinone or Amrinone therapy in patients undergoing coronary artery bypass grafting. Anesth Analg. 2002;94:2230. table of contents. (Fig. 1)
Fig. 6 The efficacy of preemptive therapy on ventricular function and oxygen transports

Echocardiographic changes observed by left ventricular end-diastolic area (preload, a), circumferential fiber-shortening (Vcf/c) (contractility, b), and end-systolic wall stress (afterload, c), and changes in oxygen delivery state observed by SvO2 (d), oxygen transport index (e), and oxygen extraction ratio (f) in preemptive therapy of milrinone or amrinone group.

B1, after anesthetic induction; B2, before cardiopulmonary bypass.

Source: Reference 21. Kikura M, Sato S. The efficacy of preemptive Milrinone or Amrinone therapy in patients undergoing coronary artery bypass grafting. Aesth Analg. 2002;94:22-30. table of contents. (a, b, c : Fig. 2, d, e, f : Fig. 3)

され、心筋酸素消費量を減少させていることが示唆された（Fig. 6c）。術後の混合静脈血の酸素飽和度（SvO2）は対照群に比べ有意に高く、70％前後で維持され、酸素運搬係数も対照群に比べ有意に高い値が維持された（Fig. 6d, e）。酸素運搬係数が低下すると酸素摂取率（酸素消費量 + 酸素運搬係数 × 100）は増加し、酸素の需給バランスが負に傾いて嫌気性代謝が亢進する。この酸素摂取率は、対照群で術後に有意に増加し、酸素の需給バランスが負に傾いたが、PDE III阻害薬では約30%未満の増加に止まった（Fig. 6f）。術後24時間のドパミンおよびニトログリセリンの総投与量は、対照群に比べ、PDE III阻害薬群では有意に少なかった。PDE III阻害薬群では、術後の乳酸値、血糖値、CRPの増加が対照群に比べ有意に抑制され、カテコラミン総投与量の減少による新生生作用の減弱や抗炎症作用が示唆された。
このようなPDE III阻害薬の有効性は他報告にもみられる。Cleveland Clinicでは、1997年からミルリノンの使用頻度が増えるにつれて、閉心術や冠状動脈バイパスグラフトの使用頻度が減少する傾向が確認された55)。また、新生児乳幼児の心臓手術後は約25%にlow output syndromeが発生し、術後合併症や死亡の主要原因となるが、Hoffmanらはリスクの高い先天性心疾患修復手術におけるミルリノンの予防的有効性を調べたところ、ミルリノンは術後36時間以内のlow output syndromeの発生や死亡のリスクを30～60%減少させたことを報告している48)。

PDE III阻害薬の先行療法は、大動脈弾性破壊前に後のみならず、より早から開始するのが望ましいと考えられる。これにより、体外循環離脱時にPDE III阻害薬を急速に投入して血圧が低下し、循環動態がより不安定になるという危険性を回避できる。筆者らがPDE III阻害薬の血中濃度とPDE III阻害薬の至適化を妨げるリスクの減少率との関係を検討した結果、有効血中濃度の30～50%でもリスクは15～30%減少することがわかった（図8）。

このようにPDE III阻害薬の先行療法は、β受容体のdownregulation、炎症反応、再循環障害などの遅延する体外循環前から投与開始し、体外循環離脱後の循環動態の至適化や酸素の需要バランスの適正化によって患者の状態をより安全な先行領域（preemptive zone）に導く治療である。

4）PDE III阻害薬の先行療法の安全性

PDE III阻害薬は、血小板凝固能や止血に対する影響が懸念される81,123)。筆者らは、閉心術における体外循環離脱時にミルリノンを投与し、血小板凝固能、血液凝固能、出皿圧、輸血量について对照群と比較検討し、安全性について考察した12)。血小板凝固能測定装置で、凝集が最大となるのに必要なadenosine diphosphate（ADP）やコラーゲンのED50を指標として評価したところ、体外循環前に比べて体外循環終了2時間後に血小板凝集能の有意下が認められたが、対照群とミルリノン群の間に有意差はなかった。血小板数は体外循環終了2時間後、24時間後に低下したが、対照群とミルリノン群の間に有意差はなかった。また、出血時間、プロトロンピン時間、活性化部分トロンボプラスチン時間、血小板とフィブリンの粘着能の示すthromboelastographyにおいても、対照群とミルリノン群の間に、有意差は認められなかった。さらに、筆者らは、先行療法の止血、凝固に関する安全性を検討した22)。ADP、コラーゲンによる血小板凝集能および
Fig. 7 Preemptive therapy of phosphodiesterase Ⅲ inhibitors reduces the risks of failure in hemodynamic optimization and balanced oxygen supply-demand (the indices of those risks are indicated in (a))

Fig. 8 Concept of preemptive therapy of phosphodiesterase Ⅲ inhibitors
This therapy reduces the risk of low-output syndrome and anaerobic metabolism after extracorporeal circulation and reperfusion, leading to ① hemodynamic optimization and ② reasonable balance of oxygen supply and demand.
CPB, cardiopulmonary bypass; PDE Ⅲ, phosphodiesterase Ⅲ.
血小板数は、術前から術後にかけて有意に低下したが、対照群とPDEIII阻害薬群の間に有意差はなく、他の血液凝固系の検査値や血中および術後の出血量や輸血量に関しても両群に有意差はなかった。

このように、PDEIII阻害薬は心臓血管手術患者において止血、凝固能に悪影響を及ぼすことなく早期から使用できると考えられる。アミリノンは、長期投与において代謝産物が骨髄を抑制し血小板減少症を起こすことがあるが、関心術の急性経過期投与は比較的安全と考えられる。

心筋細胞において、低体温下で心のCa²⁺チャネル活性は保たれるものの、Na⁺-Ca⁺交換系活性が損なわれやすいため、PDEIII阻害薬によっても心筋細胞内でのCa⁺⁺過荷荷が生じ、特に慢心不全やβ受容体の脱感作が生じている状態では、心筋の拡張不全や心室性不整脈を惹起する可能性が考えられる。しかし、筆者らが行った先行療法においては、心室性頻拍や心筋虚血の発生に関しても対照群とPDEIII阻害薬群の間に有意差は認められなかった。

5）PDEIII阻害薬と動脈・靜脈血栓塞栓症

PDEIII阻害薬によるcAMPの増加は、むしろ血小板を安定化し血栓や塞栓の予防に役立つ可能性が考えられる。周術期は、組織因子や炎症性サイトカインの増加、血管内皮障害などにより一過性の凝固亢進状態にある。筆者らは、開心術においても術中から術後にかけて凝固系の亢進と凝固系の低下が示唆されることを報告した。さらに、筆者らは、21,903人の手術患者（非心臓手術）において術後30日以内の動脈・静脈の血栓・塞栓症の発生頻度とリスクについて分析し、心筋梗塞、脳梗塞、肺塞栓症、深部静脈血栓症やそれらに関係する死亡の年齢差頻度は、男性、女性ともに年齢が進むにつれて増加することを報告した。

この結果から、心筋梗塞と肺塞栓症は術後1週間以内（70％がこの期間に発症）に起こりやすく（特に術後3
日以内）、脳梗塞および深部静脈血栓症は後2週間以内（70％がこの期間に発症）に起こりやすく（特に後2週間以内）、それぞれの動脈・靜脈血栓症を発症は後2週間以内に発症しやすい（50％がこの期間に発症）ことがあった（Fig. 9c, d）。さらに、性差および年齢の他、心・脳血管系の動脈硬化性疾患、糖尿病や高尿酸血症などの代謝性疾患、悪性腫瘍などの術前合併症などの、術期の心臓梗塞/脳梗塞/深部静脈血栓症・肺塞栓症およびこれらによる死亡に対して独立した危険因子として深く関与していることが明らかになった79)。このようなに、PDEⅢ阻害薬は血管内皮や平滑筋、血小板に働き、血栓塞性の予防に役立っているのではないかと考えられるが、予防にのくくらい寄与しているのには、臨床的にまだ明らかではなく、今後の課題であると思われる。

筆者らは、血小板凝集能測定装置において、ADPを加えて血小板の二次凝集が起こり始めめた直後にPDEⅢ阻害薬を加えると、いったん活性化して凝集した血小板が解離して元の状態に戻ることを観察し、ミセルノ、アミノノ酸における濃度依存性の血小板の安定作用を報告した78)。Chirikovらにより、このような血小板の安定作用はニトログリセリンにおいても認められている79)。これは、in vitroにおけるミセルノ酸10 μmol・L⁻¹以上の反応であり、in vivoでは1 μmol・L⁻¹がミセルノの有効薬中濃度なので、このような極端な血小板の凝集解離は起こり得ないが、臨床的ある程度の血小板安定化作用に役立つと考えられる。

筆者らは、PDEⅢ阻害薬が血管内血栓を早期に予防する効果の機序として（Fig. 10）70)、①血小板の安定化、②血管平滑筋弛緩作用、③炎症性サイトカインの抑制、などを考えている。

V. 今後の展望

PDEⅢ阻害薬の先行療法は、心臓血管外科手術においてβ受容体のdownregulation、炎症反応、再灌流障害などが発生する体外循環開始前の早期から先行介入を開始し、循環動態の至適化と酸素需要バランスの適正化によって心拍出量の低下や嫌気性代謝の亢進などのリスクを減らし、より安全な先行領域（preemptive zone）に患者の状態を導く治療である（Fig. 8）。

このような治療概念は、転帰や予後の向上にどの程度寄与するかについてはの医学的証拠は十分といえず、今後の検討課題であると考えられる。また、少数症の対象者における無作為比較試験では副作用に関する検討が必要するとの Kickらの結果を踏まえて、今後も引き続き慎重に観察し検討を重ねていく必要がある。
文献

13) 木倉健人、アミロノンのICUにおける役割 —末日の周術期における苦悩の現況。ICUとCCU. 1995;19:3-10.
35) Kikura M, Ikeda T, Kazama T, et al. Effect of prostatican-

38. 矢口裕一, 塩瀬ユリシの先発療法 (Preemptive Therapy) が効果を発揮する術後心機能の変化, なびき病, 3期臨床, 2001;20:1083-4.

64. 小林健史, 木倉修三, 証木 明, 他. 筋肉組織における
Abstract

Preemptive therapy of phosphodiesterase III inhibitor: efficacy and safety

Mutsuhito Kikura*1, Taiga Itagaki*1, Shigejito Sato*2

*1 Department of Anesthesiology, Hamamatsu Medical Center
*2 Department of Anesthesiology and Intensive Care, Hamamatsu University School of Medicine

Phosphodiesterase (PDE) III inhibitors (milrinone, amrinone, olprinone) are widely used in cardiovascular surgery as therapeutic agents for perioperative acute ventricular failure. PDE III inhibitors possess unique characteristics as inodilators, with both positive inotropic and vasodilatory effects. Recent research on PDE III inhibitors has focused on issues of dose, efficacy, and safety. On the basis of recent clinical studies, the new concept of preemptive therapy of PDE III inhibitor has been introduced in cardiovascular surgery. Preemptive therapy of PDE III inhibitor involves the administration of milrinone, amrinone, or olprinone in the early period of extracorporeal circulation during which downregulation of beta-adrenergic receptors, inflammatory responses, and reperfusion injury occur. This therapy reduces the risk of low output syndrome and anaerobic metabolism after extracorporeal circulation and reperfusion, leading to (1) hemodynamic optimization and (2) reasonable balance of oxygen supply and demand. Determination of the safety of PDE III inhibitors should be continued to reduce the risk of side effects that were not recognized in the small clinical studies. The concept of preemptive therapy of PDE III inhibitor may also be useful in the areas of aortic surgery and organ transplantation.

Key words: (1) phosphodiesterase III inhibitor, (2) preemptive therapy, (3) hemodynamic optimization, (4) reperfusion injury, (5) cardiovascular surgery