Consideration on Rotational Alignment of the Tibial Component in Total Knee Arthroplasty

Masashi HIRAKAWA, et al.
Department of Orthopaedic Surgery, Faculty of Medicine, Oita University

Abstract

Objective: Not only the femoral rotational alignment but also the tibial rotational alignment of the total knee arthroplasty (TKA) is considered a significant factor in securing favorable knee joint function. However, for those patients with brittle bones, such as rheumatoid arthritis or elderly women, there are some cases in which we will give priority to bone coverage over rotational alignment. The purpose of this study was to examine the relationship between the tibial anteroposterior (AP) axis and the position of the tibial component that prioritizes bone coverage.

Methods: In total, 157 preoperative knees of 106 patients with varus osteoarthritis indicated for primary TKA were included in the study. Two knees in which it was not possible to identify the posterior cruciate ligament (PCL) insertion were excluded from the examination. Radiographic grading was performed by using the Kellgren-Lawrence (K-L) criteria (grade 3, n=59; grade 4, n=96). We used three-dimensional preoperative planning software (Athena, Soft Cube) to simulate the tibial component fixations in the assumed cases in which the bone coverage was maximized, and we compared them with Akagi’s tibial AP axis (a line connecting the center of the tibial PCL insertion and

Keywords: total knee arthroplasty, rotational alignment, tibial component

（受理：2009.9.8）
はじめに

人工膝関節置換術（以下TKA）において、近年多く議論されている大腿骨コンポーネントの回旋配置位置の良否に大きく関与する膝関節の機能を大きく支配するため、回旋配置位置における考慮が必要である。実際に骨とコンポーネントの不適切な位置は、骨の挙動、特に内側側部の周囲組織への影響を大きくし、解剖学的骨とコンポーネントの位置の不適切な配置は、重要な骨の破壊や破損が報告されている12, 16, 19。

しかしながら高齢者を含む高齢性膝関節症の患者などでは、膝前後カップに一致させた配置よりも骨切り面への被覆を優先させた症例にしばしば遭遇する。今回、骨切り面への被覆を優先させた骨とコンポーネント配置位置と脛骨前後軸の関連について検討したので報告する。

対 象

2006年11月から2008年6月までに内側型変形性膝関節症を考慮して初回TKAの適応となった106症例157膝（男性19膝、女性138膝）の術後検査として行った画像データを利用した。平均年齢76.2歳（61～81歳）、Kellgren-Lawrence分類（以下K-L分類）grade 3：59膝、grade 4：98膝であった。

方 法

3D術前計画ソフトウェアAthena（Soft Cube社製）を用いて被覆率を優先した脛骨コンポーネント（Vanguard RP®：Biomet社製）の位置をシミュレーションし、Akiが17の脛骨前後軸（脛骨PCL付着部中央と膝蓋関節付着部内側縁を結ぶ線）と比較した。今回、CADデータとして使用したVanguard RP®の脛骨コンポーネントのサイズバリエーションは横径が59mmより4mm大、前後径が38mmより2〜3mm大で6サイズである。Athenaはマークの付けて膝関節2方向を撮影し、それぞれのX線像を3次元的に関連づけ、CTモデルに合わせることで、インプランツのCADモデルを2方向のX線写真とCTモデル上に投影することができる3D術前計画ソフトである15。X線写真とCTを組み合わせるため、骨脛骨コンポーネント設置面（脛骨骨切り面）の形状を容易に再構築し確認できる点が、通常の単純CT画像と大きく異なる（図1）。

脛骨コンポーネントは、全例前後像で脛骨骨軸に垂直、外側関節面より10mm遠位に設定した。側面像では後方傾斜3°で統一した（図2 a）。側面像では後方傾斜3°で統一した（図2 b）。なお、骨軸は脛骨近位端より遠位10cmと15cmの骨幹中点を結ぶ線とした。脛骨骨切り面では外側際にオーバーハングを起こさない範囲で、できる限り大きなコンポーネントを選択し、骨棘を切除した状態で脛骨前線の形状にあわせた設置をシミュレーションした（図2 c）。脛骨コ
図１ 3D術前計画ソフトAthena（Soft Cube社製）
X線写真とCTを組み合わせたため、実際の脛骨コンポーネント設置面（脛骨骨切り面）の形状を容易に再構築し確認できる。

図２ 脛骨コンポーネントの設置方法
a : 前後面：①脛骨軸に垂直 ②外側関節面より10mm遠位 ③脛骨外側縁にあわせて設置。
b : 側面：①後方傾斜3°
c : 脛骨骨切り面：①骨棘は切除 ②脛骨前縁の形状にあわせて設置 ③外側段後方にオーバーハングを起こさない範囲で、できる限り大きなコンポーネントを選択。
図3 腓骨コンポーネントの回旋設置角度
腓骨前後軸の垂直線とコンポーネント後縁を結ぶ線のなす角度を回旋設置角度とした。腓骨前後軸に対して外旋設置を正とした。

コンポーネントの回旋設置角度はAkagiらの提唱している腓骨前後軸の垂直線と腓骨コンポーネント後縁を結ぶ線のなす角度とした（図3）。また回旋設置角度は腓骨前後軸に対して外旋設置を正とした。

変形が著しくPCL着着部の同定が不能であった2膝を除外した155膝について、回旋設置角度とK-L分類との関係について検討した。

統計学評価はMann-Whitney U testとx2乗検定を行い、危険率5%未満を有意差ありとした。

結 果
シミュレーションした腓骨コンポーネントはAkagiらの腓骨前後軸より平均4.5±4.2°外旋設置となった。設置角度はほぼ正規分布を示したが、バラつきが大きく5.1°内旋設置のものから16.2°外旋設置まで存在した（図4）。

K-L分類grade 3の回旋設置角度の平均値は3.5±2.8°、grade 4では4.9±3.5°であり両群間に有意差を認めた（p=0.04）。さらに9°以上の外旋設置となった症例はgrade 3で59膝中2

図4 回旋設置角度は平均4.5±4.2°であり腓骨前後軸に対し外旋設置となった。設置角度はほぼ正規分布を示したが、バラつきが大きく5.1°内旋設置のものから16.2°外旋設置まで存在した。

膝（3.4%）であったのに対しgrade 4では96膝中21膝（21.9%）であり、grade 4で有意に（p=0.004）9°以上の外旋設置となる症例が多かった（図5）。
図5 K-L分類grade 4はgrade 3に比べ有意に9°以上の外旋設置が多かった（p=0.004）。

考察

脛骨回旋アライメントの指標にはさまざまな方法が存在するが、脛骨近位部の形状による方法としては
a）脛骨前線から全体の形状（脛骨前線、脛骨横断軸、脛骨後方頸部軸）、
b）脛骨頸間線、頸間線高間線を前後軸とする、
c）被覆の良好な脛骨トレイを脛骨粗面内側1/3の方向へ向けるなどがある。c）の方法は従来からしばしば用いられてきた方法であるが、症例によっては回旋外旋設置になるとの報告もある10。またAkagiら11は健常膝の検討を行い、脛骨前後軸はPCL付着部と膝蓋腱付着部内側線を結んだ線上にある脛骨コンポーネント設置の指標となると報告している。

大腿骨コンポーネントの回旋設置のみならず脛骨コンポーネント回旋設置の異常も大腿脛骨（以下FT）関節の回旋不適合を生じる原因となり、不適切な脛骨コンポーネントの設置によるポリエチレンインサートの早期磨耗や破損が報告されている12, 13。また、脛骨コンポーネントの回旋設置はFT関節のみならず膝蓋大腿（以下PF）関節にも関与する。脛骨コンポーネントが内旋設置されると脛骨粗面が大腿骨に対して外側に移動しQ角が増大するため、膝蓋骨の外側亜脱臼の危険性が高まる4, 14, 15。また過度に外旋設置された場合には膝蓋骨のトラッキングに異常を生じる危険性がある15。しかしながらFT関節、PF関節への適合性を優先して脛骨前後軸に一致させた設置を行うと、症例や機種によっては小さなコンポーネントを選択せざるを得なくなり、骨切り面の被覆が減少することでコンポーネントの固定性に悪影響を及ぼすことが懸念される3, 5, 6, 9, 20。

脛骨コンポーネントの回旋設置位置を術前にシミュレートするには单纯X線像では不可能であり、CT画像で確認することになる。CTにおける断面は座標軸の設定に影響を受ける。一般的CTの断面は、CT装置の座標系を軸として断面が形成されるため、CT撮影時の患者肢位によってCT断面画像が異なる。一方AthenaではCT画像から出力されたデータを一度3次元のvolume dataとして再構築し、3次元の骨モデルが形成される。この3次元骨モデルをX線像から得られた骨軸に垂直な平面として断面画像を作成するので、AthenaではCT撮影時の患者肢位に影響されず、常に指定の骨軸に垂直な画像が得られる11。

今回Athenaを使用したシミュレーションで脛骨頸前後軸面の被覆を優先させた設置を行い、Akagiらの脛骨前後軸の比較をおこなった。脛骨コンポーネントは155膝中138膝（89%）とほとんどの症例で脛骨前後軸に対して外旋設置されていなかった。またAkagiらの脛骨前後軸から膝蓋軸内側1/3までの角度を10°とする12）と79%（155膝中122膝）の症例で膝蓋軸内側軸から内側1/3の間で設置されていった。したがって約8割の症例では被覆を優先させた設置を行ってもほぼ適切な回旋設置が得られると考えられた。しかしながら被覆を優先させた際の回旋設置角度は5.1°の内旋設置から16.2°の外旋設置までであり、症例によるばらつきがあることは無視できない。また、Matsuiら13は、内反変形が強いほど脛骨は大腿骨に対して外旋し、大腿骨および脛骨のコンポーネント間のミスマッチが生じやすくなると報告している。今回の検討においてもK-L分類grade 4で被覆を優先すればさらに強い外旋設置が必要となる症例が多く、変形の強い症例では回旋ミスマッチを生じやすくそのため注意が必要と思われた。本研究の問題点
としては、被覆を優先した設置をシミュレートした際に、骨切り前面線の形状に合わせた設置を行ったため、このことが脛骨コンポネントの前後軸決定に影響した可能性があると考えられる。しかしながら本研究で用いた脛骨外側縫に合わせ、脛骨前方に合わせた設置は被覆を優先する設置を行う際には通常行われる手技と思われる。

脛骨前後軸よりも軽度外旋設置することで、PF関節の適合性は向上するととの報告2)や脛骨外揺（tibial torsion）が個体間でのばらつきが大きいとの報告3)も示し、最適な脛骨コンポーネントの回旋設置位置についてはコンサルスが示されていないのが現状と思われる。今回の調査の被覆を優先させた設置でも個体差が大きいうことを考慮すると、コンポーネント間ミスマッチへの解決策のひとつとしてself alignment機能のあるmobile typeのインサートは有用と思われた。

ま と め

① 被覆を優先させて設置した際、脛骨前後軸に対して脛骨コンポーネントは平均4.5°外旋設置となったが症例によるばらつきが大きかった。

② 被覆を優先させて設置した際、9割の症例で脛骨前後軸に対して脛骨コンポーネントは外旋設置となり、変形が高度なものほど外旋となった。

文 献


