THE USE OF THE \textit{CO}_2 LASER IN NEUROSURGERY

Thoshiaki TAKIZAWA

Department of Neurosurgery, Central Hospital of the Japanese National Railways

We started the studies on developing a practical model of the carbon dioxide laser surgical unit in 1969 and produced the Medilaser-S, Model MEL-442, and MEL-444. The former was officially approved by the Japanese Ministry of Health and Welfare in 1980 as the first \textit{CO}_2 laser surgical unit in Japan. And the latter was also officially approved in 1982. The volume and the weight of Model MEL-444 was reduced by 30\% respectively compared to the former model. The control system of this device was computerized and the infrared contact coagulator was built in to cover the insufficient capability of the \textit{CO}_2 laser.

We performed 143 cases of brain tumor laser surgery using these models by the end of 1982. The \textit{CO}_2 laser can be applied to both benign and malignant brain tumors. But the best indication is meningioma of the skull base, posterior fossa and ventricles. The \textit{CO}_2 laser is useful for the bloodless removal of the hard and hemorrhagic tumors. The width of thermal coagulation made by the \textit{CO}_2 laser is very thin, about 50 microns in neural tissue. Therefore, it is safely applicable to the tissue in the vicinity of the vital organs. On the contrary, the Nd-YAG laser produces thick thermal coagulation about 5 mm. Thus, the hemostatic capability of the Nd-YAG laser is stronger than the \textit{CO}_2 laser. But it is dangerous to apply the Nd-YAG laser to the tissue in the vicinity of such vital organs as the optic nerve, brain stem, basilar artery, etc. The Nd-YAG laser is excellent as a photocoagulator, but poor as a vaporizer.

For these reasons mentioned above, we use the \textit{CO}_2 laser as a main weapon in neurosurgery, and the Nd-YAG laser as an adjuvant method to the \textit{CO}_2 laser. The speed of vaporization is proportionate to the output of the \textit{CO}_2 laser. In order to vaporize a large tumor quickly, we use a high output over 60 watts. We are now trying to develop a \textit{CO}_2 laser surgical unit with an output of 300 watts.