一般講演 (ポスター) of this motion will be reported mainly on cooperating body motion. Analysis to a plane was measured for four physically healthy persons using the robotic orthosis. Analysis rehabilitation. In this report, cooperating motion of upper body in seating reach-to-grasp tasks developing a robotic therapeutic orthosis for scapula, trunk and pelvis motion for post stroke important to exert effective outcome in activities of daily livings. From this viewpoint, we are motion of whole body including upper arm, scapula stability, trunk motion and pelvis control is training for upper arm treatment. For reach-to-grasp tasks, authors thought that a cooperating motion in swallowing tasks using robotic orthosis for post stroke rehabilitation. In this report, cooperating motion of upper body in seating reach-to-grasp tasks to a plane was measured for four physically healthy persons using the robotic orthosis. Analysis of this motion will be reported mainly on cooperating body motion.

Trunk motion in reach-to-grasp tasks using robotic orthosis for post stroke rehabilitation

Trunk motion in reach-to-grasp tasks using robotic orthosis for post stroke rehabilitation.

Safe swallowing is a big challenge in the medicine and food industry. This challenge arises due to a lack of imaging modalities with sufficiently high spatial or temporal resolution. Therefore, we developed a numerical swallowing simulator (Swallow Vision) based on medical images. In this simulator, the organs shifted with time due to forced displacement, while the food flow was numerically calculated using the moving particle method. The results were verified by comparing VF images (Fig.). A literature review demonstrated that Swallow Vision was the first three dimensional swallowing simulator. This approach is a new and useful tool in the medicine and food industry.