神経系の発達と発達神経解剖学

奈良 隆寛*

ヒトの神経系は胎内はもちろん生後にも発達する。とくに乳幼児期には、臥位から坐位、立位さらには歩行という運動発達や、言語の獲得に代表される知能の発達がみられる。この発達を形態学的に説明するのは、神経細胞の発達と軸芽化だと言えよう。大脳の外装はもちろん大きくなる。乳幼児期には頭囲の拡大で示される。

ヒトの発達を形態学的にみるには胎児脳を用いたものがほとんどで、胎児期から生後数月の頃までの大脳の発達をみている論文の多くは、胎児期の発達を主に、生後脳の発達はわずかである。正常な脳の成長を示す、大脳の発達をみることは困難で、MRIでの軸芽化の発達をみにくかろうのが現状である。

ここでは脳の外表の肉眼的発達と内部構造の発達について述べる。

1. 脳の外表の発達

中枢神経系の発達は他の組織と比較すると乳幼児期の発達が早ましく、その後の発達はゆるやかである（図1）。もちろん乳幼児期以降も脳は発達していくのであるが、乳幼児期の発達からみればわずかである。

脳の重量は未熟児や成熟新生児では体重の1/7〜1/10で、大人は体重の1/50であるので、未熟児新生児は体の中で脳の占める割合は大きいことがわかる2。胎生3か月齢頃から胎児とともに急激に増加し、満期産で400 gとなり、生後も増加を続け、12か月で1,000 gとなる。2歳を過ぎると脳重量の増加は鈍り、ゆっくりと成人の値1,300 gに近づいていく（図2）。

胎児期における脳の外表面の発達の様子を図3に示す。乳児の後頭頸は10〜12週齢までは鈍で、小脳よりも前方にあり、15週齢までに小脳の後面を覆うようになる。15週齢に原始外側溝が形成されるが、他の部位は平滑である。20〜21週齢に浅い中心溝ができてくるので、脳の各葉すなわち前頭葉・頂頭葉・側頭葉・後頭葉・島を分ける主要な大脳溝は21週齢までに描く。24週齢までには上記の大脳溝を除いて、脳表はほとんど平滑である。また前頭葉の発達が悪い。

24〜28週齢にはこれに形成された大脳溝がさらに深くなり、28週齢には上側頭溝・中心前溝・中心後溝が現れる。この時期までに現れる主要な大脳溝は個体差が少なく、一次大脳溝と呼ぶ。これに対して28週齢以降に現れる二次大脳溝は個体差や左右差が著しい。

30〜32週齢では一次大脳溝は深くなり、新たに二次大脳溝が加わって複雑になっている。下側頭溝、上前頭溝、下前頭溝、頂面前溝などが形成される。

32週齢から40週齢までは外側溝の形成を連続する前頭頂弁蓋と側頭弁蓋の発達に伴い、島を覆う部分が多くなり、外側溝は後方から前方へと閉じてくる。中心溝は前頭葉の発達に伴って後方へ移動する。

このように大脳溝が発達していくと、表面から見えない脳縦裂や大脳溝に隠れた表面積は生後

* Nara T 埼玉県立小児医療センター神経科

(20)
図1 体組織の発育の4型（Scammon）
lymphoid（リンパ系型）、neural（神経系型）、
general（一般型）、genital（生殖器型）の4型に分けられる。

図2 脳重量の発達（Dobbingらより改変）

図3 胎児脳の外見の発達（Larrocheらより改変）
C：大脳、CB：小脳、PLS：原始外側溝、CIRS：輪状溝、IS：島、LS：
外側溝、CS：中心溝、PCG：中心前回、PCS：中心前溝、POCG：中心
後回、POCS：中心後溝、STG：上側頭回、STS：上側頭溝、MTG：中
側頭回、ITG：下側頭回、ITS：下側頭溝、POS：頭頂後頭溝
に急激に増加し、表面に隠れた部分の2倍にもなる。図4は脳の表面積をHesdorfferらが測定したデータである。

2. 脳の内部構造の発達

脳の内部構造の発達に関する研究には、構造別の体積を検討したものから3-4,6)、皮質の層構造の形成7）、髓鞘形成8）、シナプス形成について定性的に検討したもの9）と、神経細胞の発達について定量的に評価したものの11-20）がある。

脳の構造別体積についてはDobbing, Koop, 著者らによって報告されている。Dobbingは胎生10歳齢から生後7歳までの脳を前脳・脳幹・小脳に分けて検討し、前脳→脳幹→小脳の順で発達すると述べた9）。Koopは9→25歳齢の10例にVogtとYakovlevのコレクションから28例（20歳齢から成人まで）を加え検討した。脳が

図5 放射状グリア細胞による神経細胞の移動

15歳齢から生後5か月までの間にもっとも早くから発達し、ついで終脳が25歳齢から生後11か月の間に発達し、遅れて後脳が35歳齢から生後13か月の間に発達する6）。著者らは5例（16→27歳齢）の脳の連続切片を用いて、構造別体積の発達を検討したところ、16歳齢から間脳は体積の増加が先行し、それに脳が基底核と続き、脳皮質がもっとも遅れていた6）。

神経細胞は脳室周囲から皮質へ遊走していくことが知られている（図5）26-27）。脳皮質の原基である皮質板は7歳齢から形成され始める7）。脳室層で分裂増殖した神経細胞は、放射状グリア細胞の突起にからみつけように遊走し、中間層と境界層の間に皮質板を作る。このときからやってきた細胞は前に到着した細胞を追い越して遊走を終わる。神経細胞の遊走が正常に行われるためには、放射状グリアと遊走細胞との間の接着、誘導、切離などの制御機構が正常に働く必要がある。

脳皮質の層構造の形成は12歳齢では2層（分子層とその下層の密な細胞層）からなり、16歳齢には3層になる。21→23歳齢では4層形成で、深層から浅層への細胞の線状配置が明確となる。27→30歳齢では4→6層みられるようになり、第3層に深染層が現れる。前頭葉は4層である。34歳齢では全体が5層となり、層構造が明
図6 中枢神経系の髄鞘形成の発達（Yakovlevらより改変）

<table>
<thead>
<tr>
<th>胎月</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>2歳</th>
<th>3歳</th>
<th>4歳</th>
<th>7歳</th>
<th>10歳</th>
<th>10歳代</th>
<th>20歳代</th>
<th>それ以上</th>
</tr>
</thead>
<tbody>
<tr>
<td>前肢</td>
<td></td>
</tr>
<tr>
<td>後肢</td>
<td></td>
</tr>
<tr>
<td>脊髄内間平衡機能関連部位</td>
<td></td>
</tr>
<tr>
<td>下小脳背中部</td>
<td></td>
</tr>
<tr>
<td>下小脳背外側部</td>
<td></td>
</tr>
<tr>
<td>小脳脚</td>
<td></td>
</tr>
<tr>
<td>中小脳脚</td>
<td></td>
</tr>
<tr>
<td>下丘脳</td>
<td></td>
</tr>
<tr>
<td>上丘脳、視神経、視束</td>
<td></td>
</tr>
<tr>
<td>レンズ核 - ナラ・淡黄色</td>
<td></td>
</tr>
<tr>
<td>睫放線</td>
<td></td>
</tr>
<tr>
<td>体視覚投射路</td>
<td></td>
</tr>
<tr>
<td>小脳皮質</td>
<td></td>
</tr>
</tbody>
</table>

磁気共鳴画像（MRI）では、髄鞘形成は胎生12週から確認できる。胎児期に神経細胞が未熟で、細胞体やNissl小体を持たず、腫核に近いものである。

大脳髄鞘の形成は皮質の発達に伴って発達する。髄鞘は神経線維を形成されているが、一部を除いて大部分がまだ髄鞘を持っていない。

大脳の髄鞘形成は大部分が生後2年まで（図6）、内包後脚は生後11か月、前脚は22か月、前脚は13か月、聴放線は22か月、視神経は15か月、脳梁体は16か月、脳梁核は22か月、前頭葉は35か月、視線束は18か月、前頭葉皮質は前頭葉後部を20か月、後頭葉を22か月、頂葉を25か月、側頭葉皮質を30か月、大脳脚を27か月、大脳脚内側部を35か月で髄鞘形成が始まる。

MRI もでの髄鞘化をみていくことができるとも。T1 強調画像で髄鞘は高進号を示し画像では白く描出され、T2 強調画像で髄鞘は低進号を示し画像では黒く描出される。新生児脳の T1 強調画像では脳幹背側、上・下小脳脚、内包後脚、及び線維は高進号として認められ（図7）、生後3か月になると、脳幹全体、線維、線維、中枢前回と後回の髄鞘が高進号を示す。生後6か月で、脳梁と半卵円の一部が高進号になるが、前頭葉の髄鞘には高進号がみられない（図8）。生後9か月で、前頭葉の深部白質が高進号を示し、半卵円はほぼ髄鞘化する（図9）。

髄の神経細胞を定量的に評価するには、パラフィン包埋の切片では収縮率にパラツキが大きく、セロイデン包埋の連続切片を用いなければならない。著者らのグループは、クロム酸二次固定を行ったセロイデン連続切片を用いることによって切片の不均一な収縮を防ぎ、画像解析装置とコンピュータを用いて、ヒト胎児の脳幹神経核の神経細胞の形態計測学的な発達について検討してきた。

胎児16、18、21、23、27、30、33、34、35、40週齢の10例の胎児脳もしくは新生児脳（以後胎児脳とする）と、2か月の乳児脳と63歳の成人
脳の計12例を対象とし、ある神経核を構成する神経細胞の存在する切片の枚数から、核柱の長さを求めた。さらに各切片の神経核を構成する神経細胞の最外周を結んだ多角形の面積の平均値を求め、体積を算出した。つぎに光学顕微鏡、描画装置、画像解析装置（DigiplanもしくはMini-Mop、Kontron社）、コンピュータ（PC-9801、NEC）の組み合わせにより、神経核の神経細胞の数と、細胞体の周長と面積を計測した。細胞体の面積は細胞の大きさを定量的に表現するために計測した。さらに、細胞体の真円率circularity ratio (CR)を以下の式より求め、神経細胞の成熟の度合いを数値化して検討した。

真円率 \(CRR = \frac{4\pi A}{L^2} \)

（A：面積, L：周長）

また、神経細胞1個が持つ周囲の neuropil（神経線維、グリア、血管や結合組織が含まれる）を以下の式より算出して、neuropil indexとして時系で比較検討し評価した。

neuropil index =

核柱の面積の総和 - 神経細胞の面積の総和 × 10^3

神経細胞数

脳幹計画の中でも、運動系（体性遠心性）の神経核として舌下神経核を、知覚系（体性求心性）の核として三叉神経主知覚核を、知覚系（特殊求心性）の核として蝸牛神経腹側核を選び、それぞれのパラメーターについて検討した。

核柱の長さと体積については、舌下神経核と三叉神経主知覚核は16週齢から2か月齢にわたって、大きな増加はみられず増増した。一方、蝸牛神経腹側核は在胎18週齢と21週齢の間で増加がみられ、その後の増加はわずかであった。

神経細胞の大きさについては、蝸牛神経腹側核の神経細胞の面積は18週齢と21週齢の間で急激に大きくなり、以後は変わらない（表1）。ヒストグラムでみると、16週齢と18週齢では

図7 正常新生児のMRI（T1強調画像）

橋脊側、小脳白質、内包後脚、視床外側、放線冠の一部、中心溝の前後で高進号がみられる。
図8 正常6か月齢児のMRI（T1強調画像）

橋、小脳白質、内包後脚、放縁冠、視放縁、中心前回、中心後回の高進号は一段と強くなって
いる。新たに内包前脚と脳梁膝部が高進号を示す。

30～230 mm²の小さな神経細胞ばかりであるると
ころに、21週齢以降にはこれに230～430 mm²の
大きな神経細胞が加わり幅の広いヒストグラム
ができあがる（図10）。

一方、舌下神経核の神経細胞の面積は、16週
齢から27週齢まで増し、30週齢から2か月齢
にかけて大きくなる（表1）。ヒストグラムでみ
ると、16週齢から27週齢までは30～330 mm²
の小さな神経細胞が主体であるところに、30週
齢以降にはこれに330～630 mm²の大きな神経細
胞が半分以上を占めるようになり幅の広いヒスト
グラムができあがる（図13）。

細胞体に存在するNissl顆粒はいずれの核も
30週齢から明瞭となり、35週齢ではかなり粗大
なものが見えるようになる。成人の舌下神経核は
突起が長く伸び、細胞体の直径と同じ程度のもの
が見られることが多く、この突起は30週齢以降
に伸びてくる。一方、蝸牛神経腹側核の突起は
16週齢から成人に到るまで短く、円形の細胞体
である。

これらについて真円率を検討すると（表1），
定性的な所見を裏付けるように、舌下神経核では
30週齢以降に真円率が減少し、成人例では2か
月齢の約2/3に減少した。三叉神経主知覚核と蝸
牛神経側視核では減少もみられなかった。蝸牛神
経腹側核のneuropil indexは16週齢から2か月
齢にかけて変化せず、成人例では3～4倍となる。
一方、舌下神経核のneuropil indexは30週齢以
降に増加し、30週齢から2か月齢の間で2～3倍
となり、成人例でもさらに増加がみられる。これに
対して、三叉神経主知覚核では16週齢から40週
齢にかけて増加して16倍となり、生後には大き
く変わらなかった。

いくつかのパラメーターを統合的にみると、蝸
図9 正常9か月齢児のMRI（T1強調画像）
後頭葉や頭頂葉で髄質化がみられる。

表1 蝸牛神経脇側核、舌下神経核、三叉神経主知覚核の核柱の体積、神経細胞の面積、真円率、neuropil index の比較

<table>
<thead>
<tr>
<th></th>
<th>16WG</th>
<th>18WG</th>
<th>21WG</th>
<th>23WG</th>
<th>27WG</th>
<th>30WG</th>
<th>33WG</th>
<th>34WG</th>
<th>35WG</th>
<th>40WG</th>
<th>2か月</th>
<th>63歳</th>
</tr>
</thead>
<tbody>
<tr>
<td>核柱の体積</td>
<td></td>
</tr>
<tr>
<td>蝸牛神経脇側核</td>
<td>0.1</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1.4</td>
<td>2.2</td>
<td>1.9</td>
<td>2.3</td>
<td>2.4</td>
<td>3.1</td>
<td>6.6</td>
</tr>
<tr>
<td>舌下神経核</td>
<td>0.9</td>
<td>0.7</td>
<td>0.6</td>
<td>0.8</td>
<td>1.6</td>
<td>0.7</td>
<td>0.8</td>
<td>1.1</td>
<td>1.9</td>
<td>2.4</td>
<td>2.8</td>
<td>5.5</td>
</tr>
<tr>
<td>三叉神経主知覚核</td>
<td>0.3</td>
<td>0.4</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.7</td>
<td>1</td>
<td>1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>2.3</td>
</tr>
</tbody>
</table>

神経細胞の面積												
蝸牛神経脇側核	88±20	105±51	109±65	225±83	202±62	231±74	204±109	223±68	280±92	252±77	251±77	378±136
舌下神経核	219±56	247±71	251±71	173±42	239±72	350±93	331±100	400±106	356±107	311±99	568±168	754±293
三叉神経主知覚核	47±16	38±17	60±22	71±30	62±24	49±19	74±32	76±32	89±36	91±35	91±41	127±70

真円率												
蝸牛神経脇側核	0.85±0.10	0.81±0.09	0.83±0.09	0.82±0.10	0.85±0.08	0.82±0.10	0.82±0.11	0.82±0.10	0.77±0.10	0.79±0.11	0.80±0.10	0.81±0.11
舌下神経核	0.76±0.12	0.73±0.13	0.75±0.13	0.85±0.15	0.79±0.11	0.73±0.12	0.65±0.20	0.70±0.13	0.68±0.14	0.69±0.14	0.40±0.20	0.55±0.15
三叉神経主知覚核	0.84±0.11	0.78±0.14	0.82±0.12	0.78±0.13	0.80±0.15	0.80±0.15	0.82±0.13	0.83±0.13	0.84±0.11	0.82±0.13	0.82±0.13	0.74±0.15

Neuphil index												
蝸牛神経脇側核	0.5	1.4	0.9	0.6	1.1	1.2	1.7	1.4	1.8	2.9	1.6	4.4
舌下神経核	4.2	2.6	2.9	3.9	7.2	3.3	5.5	3.5	10.3	11.1	11.1	18.8
三叉神経主知覚核	0.06	0.1	0.18	0.18	0.52	0.37	0.56	0.43	1.01	0.94	0.45	1.1
図10 蜗牛神経腹側核（上）と舌下神経核（下）の神経細胞の面積のヒストグラム
縦軸は％、横軸は神経細胞の面積（μm²）
牛神経脳側核は18週齢と21週齢の間で大きな段階的発達がみられ、舌下神経核は30週齢以降の発達が著しく、三叉神経主知覚核は徐々に成熟した。

運動系の神経核で吸収に深い関係を持つ核である舌下神経核の成熟が30週齢以降であることは、吸収反射の成熟が未熟児で34週齢頃であることを裏付けており興味深い。他の吸収に関連する顔面神経核や三叉神経運動核についても、同様に30週齢以降の発達が著しく、同じ時期にこれらの神経核が成熟していくことがかかっている13,15。ただし、吸収に関連する運動神経核でも、神経細胞の顔（形態学的特徴）は異なっている。目立つのは細胞体の突起の形態である。舌下神経核や三叉神経運動核の細胞の突起は長く、成人では真円率が0.4という値をとる14。これに対して、顔面神経核の細胞では突起は短く、成人では真円率は0.65と前2核の乳突核の値と同程度である15。成熟の様相を似していても、定性的所見ばかりでなく形態計測学的にも顔が異なっていることは興味深い。

一方、聴覚系の核である蝸牛神経脳側核では18週齢と21週齢の間で著しい発達があり、その後の成熟は緩徐である。他の聴覚関連核である内側オリーブ核でも同様の傾向である16。ヒトの聴覚の発達は音に対する反射の反射運動や心拍の変動から23~24週齢に成熟してくると言われており17,18。この20週齢前半に発達の急速な進展が形態学的に認められたことは興味深い。聴性脳幹反応でも20週齢前半に著しい変化があると言われており19、生理学的にも裏付けられている。本論文で示されると、聴覚系の核は運動系の核に比べると成熟が早いことが形態学的に実証された。また、細胞体が丸く突起が短いことも蝸牛神経脳側核の特徴のひとつである。

このように神経細胞の発達を形態計測をしていくことは重要な課題である。定性的な他のデータと合わせて、今後の詳細な研究が必要である。

文献

20) 山口勝之, 後藤 昇, 奈良隆寛: ヒト小脳颗粒層の発達. 脳と発達 24: 327-334, 1992

(29)