Fatigue Limit of Steel with Cracks*

By Hisashi OHUCHIDA**, Saburo USAMI*** and Akio NISHIOKA****

Fatigue tests were carried out on mild steel plate specimens with various lengths of cracks. The relation between the alternating fatigue limit σ_{w} and the crack length was well expressed by following equation.

$$R_{p} = \theta_{w} \left(\frac{1}{2} \left(\frac{R_{p}}{\sigma_{w}} - 1 \right) \right) = \text{const.}$$

where, R_{p} is the cyclic plastic zone size at fatigue limit, θ_{w} is the equivalent crack length of an infinite plate, and σ_{w} is the yield strength of the material. The size of the persistent slip band zone on the fatigue limit is about one tenth of R_{p}, and is nearly equal to the measured mean grain size of the material. R_{p} has close relations with the crack length corresponding to the fatigue limit of a plain specimen, the material constant which was already obtained in the criteria of fatigue crack initiation at notch roots, and the critical notch root radius at the branch point.

1. Introduction

Machine parts and structures may have flake which have appeared in the process of casting, forging, welding and heat treatment, but they still have inherent strength which is sometimes enough for their operations. Their fatigue limit σ_{w} mainly depends on the crack length θ_{w}. Frost (1) and Kobayashi and Nakazawa (2) obtained the experimental relations:

$$\theta_{w} = \text{const.} \times \frac{1}{\sigma_{w}}$$

where θ_{w} is a constant equal to 3 or 4. Recently, Ando (3,4), Frost et al. (5) and Harrison (6) analyzed the data using the stress intensity factor by linear fracture mechanics.

The authors considered that, as the condition of a fatigue crack tip is elastic-plastic, the most essential parameters are cyclic plastic zone size R_{p} and cyclic crack opening displacement ΔK; and then they revealed that the fatigue crack growth rate is proportional to them (7). It can be considered that the fatigue limit of a cracked material is the critical condition of fatigue crack propagation. This idea also has close relation with Ishibashi’s E_{c} criterion (8) for fatigue crack initiation which is based on the average stress in inherent region at a notch root.

In this report, fatigue tests are carried out on mild steel plate specimens with various lengths of cracks. These results are analyzed by elastic plastic fracture mechanics, and then the relations among the characteristics at fatigue limit of a cracked material, a notched material and a plain specimen are investigated.

2. Experimental procedure

JIS SM41 structural mild steel plate is used as a test material. Its chemical compositions and mechanical properties are shown in Table 1. The mean grain size is 0.025 mm. The test specimens were taken from a plate with a thickness of 12 mm in the rolling direction of the material, and machined into side notched plates with a width of 110 mm as shown in Fig. 1(a). Then, fatigue cracks were introduced at notch roots in the length from 0.35 mm to 10 mm by an alternating stress of ±50 kgf/mm using the Tokyo-koki resonance type Vibrophoe fatigue testing machine (2, 5, 10, 150 Hz). During the tests, load unbalance of the specimen was adjusted to within 5%, so the differences of crack length were held within 2% even in the case of the smallest crack, 0.35 mm in length. To minimize the fatigue damage at the crack tip, the crack growth rates were held small, from 10^{-9} to 10^{-7} mm/c when fatigue cracks were added at notch roots.

Then the notches were cut out to make uniform length of the cracks, as shown in Fig. 1(b), except for a specimen with cracks of 10 mm in length. The plain specimen was a cylindrical specimen of 5 mm in diameter as shown in Fig. 1(c). All the specimens were annealed in a vacuum at 650°C for 2 hours in order to remove the influence of machining the cracks. Each plate specimen was electro polished at the cracked area. Fatigue tests were performed under reversed loading in the same way as the cracks were added.

3. Experimental results and discussions

Figure 2 shows the test results of...
Table 1 Chemical compositions and mechanical properties of the material

<table>
<thead>
<tr>
<th>Chemical compositions</th>
<th>Mechanical properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Si</td>
</tr>
<tr>
<td>0.18</td>
<td>0.01</td>
</tr>
</tbody>
</table>

$\sigma_{\text{min}} \leq \sigma \leq \sigma_{\text{max}}$ and is maximum stress σ_{max} when $\sigma_{\text{min}} \leq 0$. Above equation is based on the phenomenon that the cyclic yielding strength is about a half of the static yield strength σ_y in common steels(10).

In Fig. 2 the solid points show that the cracks propagated and the specimens were fractured, and the hollow circular point show that the cracks did not propagate any more even after 10^7 cycles of loading. One of the specimens shown in Fig. 1(a) was stressed under ± 4.75 kg/mm2 and cracks propagated far enough from notch roots. Then, alternating stress was decreased as ± 4.5 to ± 4.2 kg/mm2, each time cracks propagated 2 mm. Each crack growth rate was 4.4×10^{-6} mm/c, 2.6×10^{-6} mm/c and 0 mm/c (no propagation after 10^7 cycles of loading). Their microphotographs at crack tips are shown in Fig. 3. These results are also shown in Fig. 2. From this Figure, it is clear that the critical strength (threshold) of fatigue crack propagation and the fatigue limit of a cracked material are very similar, so it seems that these are the same characteristics of materials.

A calculated curve, which means that the cyclic plastic zone size R_{pc} of Eq. (3) is constant 0.27 mm, is shown in Fig. 2. This curve is well close to the experimental values of fatigue limit. Then, the relation between fatigue limit σ_f and effective crack length a_e can be shown as follows:

$$R_{pew} = \text{const.}$$

$$= a_e (\sec \frac{\sqrt{a_e}}{2a_0} - 1) = 0.27 \text{mm} \quad (4)$$

Therefore, the cyclic plastic zone size at the fatigue limit is material constant, and the model for the fatigue limit of a cracked material can be shown as Fig. 4. Equation (4) can be simplified by using the stress intensity factor K in the small

Fig. 1 Details of test specimens

the relation between alternating net section stress σ_{an} and effective crack length a_e which is the equivalent crack length of an infinite plate and expressed as follows:

$$a_e = \frac{K^2}{\sigma_{\text{an}}}$$

$$= \frac{K^2}{\sigma_{\text{an}}} (1 - \frac{2K}{W}) ^{\frac{1}{2}} \tan \frac{\pi K}{W} \quad (2)$$

where, K is the stress intensity factor, W is width of the specimen, and α is a coefficient which is 1.258 when $2a/w=0$ and 1.0 when $2a/w=0.7$. The cyclic plastic zone size R_{pc0} in a modified Dugdale model(9) which was proposed by the authors as a useful parameter to express the fatigue damage at crack tip, is shown as follows:

$$R_{pc0} = a_e (\sec \frac{\sqrt{a_e}}{2a_0} - 1) \quad (3)$$

where σ_y is yield strength and σ is stress range $\Delta \sigma$ when minimum stress

Fig. 2 Effect of crack length on fatigue limit
scale yielding condition as \(\gamma / \sigma_y \leq 0.3 \).

\[
K_w = \sigma_w \sqrt{\pi a_e} = \text{const.}
\]

\[
= 21 \frac{\text{ksi} \sqrt{\text{in}}}{\text{in}^{3/2}} \quad \ldots \ldots . (5)
\]

Equation (4) can also be expressed, for convenience's sake, with modifying the stress intensity factor modified by the hypothetical crack length which consists of the effective crack length and \(R_{ pests} \).

\[
K_w = \sigma_w \sqrt{\pi (a_e + R_{ pests})}
\]

\[
\leq \sigma_w \sqrt{\pi a_e \left(1 - \frac{R_{ pests}^2}{a_e^2}\right)} = \text{const} \ldots \ldots (6)
\]

From Fig. 2, the crack length \(a_e \), corresponding to the fatigue limit of a plain specimen, is obtained as about 0.22 mm. This length is nearly equal to \(R_{ pests} \).

Figures 5 and 6 show microphotographs at the tips of the cracks whose lengths are 0.35 mm and 1.0 mm respectively. The persistent slip band zone at the fatigue limit \(R_{ pests} \) is from 0.02 mm to 0.05 mm on both length of cracks. This value is close to the measured average grain size of the material. Namely:

\[
R_{ pests} = \text{const.}
\]

\[
\approx \text{grain size} \ldots \ldots (7)
\]

When the cyclic plastic zone size \(R_{ pests} \) is large enough, the grain size of the material does not affect the crack growth rate (11) and the two are proportional to each other (7), but when \(R_{ pests} \) becomes small, the crack growth rate is steeply decreased (12) by the resistance of the grain boundaries, and at last, the crack does not propagate any more when the actual cyclic plastic zone (persistent slip band zone) \(R_{ pests} \) is restricted to a grain boundary. Equation (7) supports the criterion of Eq. (4) on the crystallographic aspect of the material's structure. Figure 7 shows the persistent slip band zone \(R_{ pests} \) in relation to \(\sigma / \sigma_y \). From this figure, we can obtain the next relation:

\[
R_{ pests} = C \quad R_{ pests} \quad \ldots \ldots \ldots (8)
\]

where \(C \) is a proportional constant which is 0.11 in this case. Taira and Tanaka also obtained similar relations in AISI 316L steel (13) and 0.035C mild steel (14).

4. Analysis of experimental results obtained by other authors

4.1 Fatigue limit of materials with crack-like defects

Figure 8 shows other examples rearranged in the same way as in Fig. 2. In Fig. 8(a) and (b) the values \(a_e \) of Eq. (1), which were obtained experimentally by each author (2)(11), are shown as the slope. Figure 8(c) shows the results (15)(36) on different kinds of specimens, i.e., are the plate specimens and cylindrical specimens. Since both results are almost the same, their cyclic plastic conditions at
the crack tips must be the same.

The rearranged results for other data(3)(16)(36) are further summarized in Table 2. Figure 9 shows their alternating stress intensity factors at fatigue limit in small scale yielding condition in relation with yield strength or 0.2% proof strength σ_p. These values slightly tend to lower in high hardness steel, but all of them fit in the next narrow region.

$$K_w = 10 \sim 22 \frac{\text{MPa} \cdot \text{m}^{\frac{1}{2}}}{\text{mm}}$$ \hspace{1cm} (9)

On the other hand, R_p changes from 0.3 mm to 0.001 mm with an increasing yield strength as shown in Fig. 10. The straight line in this figure can be expressed as follows:

$$R_p = 90 \sigma_p^{\frac{-2}{3}}$$ \hspace{1cm} (10)

This relation looks like Petch's equation(37) on the relations between yield strength and grain size of materials. It suggests that R_p is a material constant relating to the structure of materials, and also supports the contents of Eqs (4) and (7). From the fact that R_p is equal to $1/2 \cdot (K_w/\sigma_p)^2$ in small scale yielding condition, there is a apparent that the meanings of Eqs. (10) and (9) are the same.

Figure 11 shows the stress intensity factor at fatigue limit in $\sigma_p/\sigma < 1$ rearranging Frost's experimental results(22)(26) under various minimum stresses. Although the stress intensity factor range ΔK_w gradually decreases following the change in the minimum stress from zero to 6 kg/mm², the dominant factor is the maximum stress intensity factor K_{\max} when the minimum stress is negative and the stress intensity factor range ΔK_w when the minimum stress is positive. This fact suggests that the cyclic plastic zone size R_p can fairly be expressed as
<table>
<thead>
<tr>
<th>No.</th>
<th>Steel</th>
<th>σ_y kg/mm²</th>
<th>σ_b kg/mm²</th>
<th>$\sigma_{0.2}$ kg/mm²</th>
<th>Kind of cracks</th>
<th>Loading condition</th>
<th>$R_{p,0.005}$ mm</th>
<th>K_w kg/mm²</th>
<th>ρ_0 mm</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SM41</td>
<td>25.6</td>
<td>49.3</td>
<td>18.0</td>
<td>Fatigue crack</td>
<td>Tension for plate</td>
<td>0.22</td>
<td>21.0</td>
<td>-</td>
<td>This experiment</td>
</tr>
<tr>
<td>2</td>
<td>SS41</td>
<td>24.6</td>
<td>46.2</td>
<td>20.5</td>
<td>Acute notch</td>
<td>Tension for plate</td>
<td>0.11</td>
<td>21.0</td>
<td>2.0</td>
<td>(15), (36)</td>
</tr>
<tr>
<td>3</td>
<td>SP55</td>
<td>31.6</td>
<td>55.1</td>
<td>25.0</td>
<td></td>
<td>Rotating bending</td>
<td>0.055</td>
<td>19.5</td>
<td>0.8</td>
<td>(19)</td>
</tr>
<tr>
<td>4</td>
<td>SP60</td>
<td>37.8</td>
<td>62.4</td>
<td>29.5</td>
<td></td>
<td>Tension for plate</td>
<td>0.018</td>
<td>11.5</td>
<td>-</td>
<td>(15)</td>
</tr>
<tr>
<td>5</td>
<td>13Cr</td>
<td>44.5</td>
<td>69.5</td>
<td>34.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.020</td>
<td>15.5</td>
<td>-</td>
<td>(17)</td>
</tr>
<tr>
<td>6</td>
<td>Ni-18Cr</td>
<td>82.3</td>
<td>95.9</td>
<td>45.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.035</td>
<td>17.5</td>
<td>-</td>
<td>(20)</td>
</tr>
<tr>
<td>7</td>
<td>SM41</td>
<td>27.9</td>
<td>45.2</td>
<td>22.3</td>
<td>Acute notch</td>
<td>Tension for plate</td>
<td>0.047</td>
<td>13.5</td>
<td>0.25</td>
<td>(21)</td>
</tr>
<tr>
<td>8</td>
<td>HT55 (K)</td>
<td>33.6</td>
<td>54.9</td>
<td>30.2</td>
<td></td>
<td>Tension for plate</td>
<td>0.011</td>
<td>11.5</td>
<td>0.25</td>
<td>(22)</td>
</tr>
<tr>
<td>9</td>
<td>HT55 (Q)</td>
<td>42.4</td>
<td>56.6</td>
<td>30.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.014</td>
<td>15.0</td>
<td>0.3</td>
<td>(23)</td>
</tr>
<tr>
<td>10</td>
<td>SP45</td>
<td>28.4</td>
<td>46.5</td>
<td>20.5</td>
<td></td>
<td>Rotating bending</td>
<td>0.20</td>
<td>22.0</td>
<td>0.5</td>
<td>(24)</td>
</tr>
<tr>
<td>11</td>
<td>SC70</td>
<td>49.8</td>
<td>70.3</td>
<td>32.5</td>
<td></td>
<td>Tension for plate</td>
<td>0.016</td>
<td>13.5</td>
<td>0.4</td>
<td>(25)</td>
</tr>
<tr>
<td>12</td>
<td>SC60</td>
<td>59.6</td>
<td>68.4</td>
<td>25.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.011</td>
<td>20.0</td>
<td>0.4</td>
<td>(26)</td>
</tr>
<tr>
<td>13</td>
<td>SC50</td>
<td>61.1</td>
<td>75.2</td>
<td>30.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.013</td>
<td>17.5</td>
<td>-</td>
<td>(27)</td>
</tr>
<tr>
<td>14</td>
<td>SC50</td>
<td>-</td>
<td>71.5</td>
<td>-</td>
<td>Pressed crack</td>
<td>-</td>
<td>0.020</td>
<td>10.5</td>
<td>-</td>
<td>(28)</td>
</tr>
<tr>
<td>15</td>
<td>Cr-Mo</td>
<td>200.4</td>
<td>205.1</td>
<td>80.0</td>
<td></td>
<td>-</td>
<td>0.0046</td>
<td>10.5</td>
<td>-</td>
<td>(29)</td>
</tr>
<tr>
<td>16</td>
<td>Ni-6Cr-Wo (N=296)</td>
<td>78.1</td>
<td>90.2</td>
<td>48.0</td>
<td></td>
<td>-</td>
<td>0.018</td>
<td>14.0</td>
<td>-</td>
<td>(30)</td>
</tr>
<tr>
<td>17</td>
<td>Ni-6Cr-Wo (N=419)</td>
<td>122.9</td>
<td>136.1</td>
<td>60.0</td>
<td></td>
<td>-</td>
<td>0.013</td>
<td>13.5</td>
<td>-</td>
<td>(31)</td>
</tr>
<tr>
<td>18</td>
<td>Ni-6Cr-Wo (N=452)</td>
<td>159.9</td>
<td>174.2</td>
<td>75.0</td>
<td></td>
<td>-</td>
<td>0.013</td>
<td>11.5</td>
<td>-</td>
<td>(32)</td>
</tr>
<tr>
<td>19</td>
<td>Ni-6Cr-Wo (N=546)</td>
<td>191.4</td>
<td>213.1</td>
<td>80.0</td>
<td></td>
<td>-</td>
<td>0.013</td>
<td>20.0</td>
<td>0.3</td>
<td>(33)</td>
</tr>
<tr>
<td>20</td>
<td>Ni-6Cr-Wo (N=723)</td>
<td>160</td>
<td>170</td>
<td>69.0</td>
<td></td>
<td>-</td>
<td>0.013</td>
<td>10.5</td>
<td>-</td>
<td>(34)</td>
</tr>
<tr>
<td>21</td>
<td>0.22Cr</td>
<td>29.5</td>
<td>44.1</td>
<td>20.2</td>
<td>Acute notch</td>
<td>Tension for plate</td>
<td>0.13</td>
<td>18.0</td>
<td>-</td>
<td>(20), (1)</td>
</tr>
<tr>
<td>22</td>
<td>0.05Cr</td>
<td>23.3</td>
<td>29.5</td>
<td>-</td>
<td>Acute notch</td>
<td>Tension for plate</td>
<td>0.018</td>
<td>19.5</td>
<td>-</td>
<td>(21), (1)</td>
</tr>
<tr>
<td>23</td>
<td>0.5Cr</td>
<td>78.8</td>
<td>90.5</td>
<td>48.5</td>
<td>Fatigue crack</td>
<td>Rotating bending</td>
<td>0.027</td>
<td>14.5</td>
<td>-</td>
<td>(22)</td>
</tr>
<tr>
<td>24</td>
<td>Ni-18Cr</td>
<td>78.7</td>
<td>94.5</td>
<td>49.6</td>
<td>Fatigue crack</td>
<td>Acute notch</td>
<td>0.027</td>
<td>16.5</td>
<td>-</td>
<td>(23)</td>
</tr>
<tr>
<td>25</td>
<td>0.5Cr</td>
<td>59.8</td>
<td>61.4</td>
<td>26.8</td>
<td>Fatigue crack</td>
<td>Rotating bending</td>
<td>0.023</td>
<td>15.5</td>
<td>-</td>
<td>(24)</td>
</tr>
<tr>
<td>26</td>
<td>0.06Cr</td>
<td>20.0</td>
<td>31.7</td>
<td>19.2</td>
<td>Fatigue crack</td>
<td>Rotating bending</td>
<td>0.023</td>
<td>12.5</td>
<td>-</td>
<td>(25)</td>
</tr>
<tr>
<td>27</td>
<td>0.12Cr</td>
<td>26.0</td>
<td>39.7</td>
<td>23.0</td>
<td>Fatigue crack</td>
<td>Rotating bending</td>
<td>0.023</td>
<td>12.0</td>
<td>0.3</td>
<td>(26)</td>
</tr>
<tr>
<td>28</td>
<td>0.3Cr</td>
<td>33.9</td>
<td>56.7</td>
<td>26.5</td>
<td>Acute notch</td>
<td>Rotating bending</td>
<td>0.023</td>
<td>12.0</td>
<td>0.3</td>
<td>(27)</td>
</tr>
<tr>
<td>29</td>
<td>Batelle steel</td>
<td>36.9</td>
<td>72.3</td>
<td>29.0</td>
<td>Fatigue crack</td>
<td>Acute notch</td>
<td>0.023</td>
<td>12.0</td>
<td>> 0.2</td>
<td>(28)</td>
</tr>
<tr>
<td>30</td>
<td>0.5Cr</td>
<td>35.5</td>
<td>63.7</td>
<td>27.0</td>
<td>Fatigue crack</td>
<td>Acute notch</td>
<td>0.031</td>
<td>12.5</td>
<td>< 0.1</td>
<td>(29)</td>
</tr>
<tr>
<td>31</td>
<td>0.5Cr</td>
<td>28.5</td>
<td>47.9</td>
<td>21.5</td>
<td>Acute notch</td>
<td>Tension for plate</td>
<td>0.040</td>
<td>12.0</td>
<td>0.5</td>
<td>(30), (31)</td>
</tr>
<tr>
<td>32</td>
<td>0.5Cr</td>
<td>30.5</td>
<td>50.4</td>
<td>26.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.027</td>
<td>15.0</td>
<td>0.5</td>
<td>(32)</td>
</tr>
<tr>
<td>33</td>
<td>0.5Cr</td>
<td>34.3</td>
<td>61.2</td>
<td>28.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.036</td>
<td>16.5</td>
<td>0.4</td>
<td>(33)</td>
</tr>
<tr>
<td>34</td>
<td>0.5Cr</td>
<td>20.7</td>
<td>38.0</td>
<td>18.8</td>
<td></td>
<td>Tension for plate</td>
<td>0.028</td>
<td>12.0</td>
<td>0.6</td>
<td>(34)</td>
</tr>
<tr>
<td>35</td>
<td>0.5Cr</td>
<td>31.5</td>
<td>54.8</td>
<td>24.9</td>
<td></td>
<td>Tension for plate</td>
<td>0.030</td>
<td>12.0</td>
<td>0.4</td>
<td>(35)</td>
</tr>
<tr>
<td>36</td>
<td>0.5Cr</td>
<td>35.4</td>
<td>68.7</td>
<td>27.4</td>
<td></td>
<td>Tension for plate</td>
<td>0.028</td>
<td>12.0</td>
<td>0.25</td>
<td>(36)</td>
</tr>
<tr>
<td>37</td>
<td>0.5Cr</td>
<td>86.5</td>
<td>97.1</td>
<td>47.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.050</td>
<td>22.0</td>
<td>0.4</td>
<td>(37)</td>
</tr>
<tr>
<td>38</td>
<td>0.5Cr</td>
<td>116.3</td>
<td>141.7</td>
<td>97.5</td>
<td></td>
<td>Tension for plate</td>
<td>0.031</td>
<td>21.0</td>
<td>< 0.05</td>
<td>(38)</td>
</tr>
<tr>
<td>39</td>
<td>0.5Cr</td>
<td>80.3</td>
<td>97</td>
<td>41.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.055</td>
<td>19.5</td>
<td>0.15</td>
<td>(39)</td>
</tr>
<tr>
<td>40</td>
<td>0.5Cr</td>
<td>39.4</td>
<td>67.4</td>
<td>26.0</td>
<td></td>
<td>Tension for plate</td>
<td>0.045</td>
<td>15.0</td>
<td>0.2</td>
<td>(40)</td>
</tr>
</tbody>
</table>

σ_y: Yield strength or 0.2% proof strength, σ_b: Tensile strength, $\sigma_{0.2}$: Fatigue limit of plain specimen, $R_{p,0.005}$: Critical crack length corresponding to $\sigma_{0.2}$, K_w: Cyclic plastic zone size at fatigue limit which expressed as $\sigma_{0.2}$, ρ_0: Stress intensity factor at fatigue limit in small scale yielding condition, ρ_0: Critical notch root radius at branch point.
Fig. 7 The persistent slip band zone size at fatigue crack tips

Eq. (3). Similar effects of minimum stress are observed on a plain specimen of high hardness steel\(^{39}\) and in corrosion fatigue\(^{46}\).

4.2 The relations between \(R_{p}w\) and other characteristics at fatigue limit

In the criteria for the fatigue limit of crack initiation from a notch root, the inherent length of material is also considered to be important. These material constants\(^{41}-^{43}\) are similar to \(R_{p}w\) as shown in Fig. 10. Therefore, it can be considered that the limit of crack initi-

Fig. 9 The alternating stress intensity factors at fatigue limit in small scale yielding for various steels

Fig. 10 The relation between material constants and yield strength

Fig. 11 The Effect of minimum stress on the fatigue limit of cracked material (0.22% steel)\(^{22}(36)\)
Fatigue at a notch root and the fatigue limit of a cracked material are based on a similar mechanism.

Figure 12 shows the relations between \(R_{pew} \) and the equivalent crack length \(a_e \), which corresponds to the fatigue limit of a plain specimen. The line of this figure shows the next relation:

\[
A_e = R_{pew} \quad \ldots \ldots (11)
\]

Above equation may relate to the facts that the plain specimen also has slip bands in some grains and that \(R_{pew} \) is nearly equal to the grain size of the material. When \(R_{pew} \) is below 0.005 mm, \(A_e \) does not decrease any more. It means that the fracture origin changes from cyclic slip bands in grains to non-metallurgical inclusions.

A notched material has two kinds of fatigue limit as shown in Fig. 13. One is the fatigue limit for crack initiation and the other is the fatigue limit for crack propagation. The branch point of them is important to evaluate the strength of the material which has flaws or notches. It is appropriate to indicate the branch point with the root radius \(R_e \) of the notch at this point, because the stress distribution depends mainly on the radius of notch roots(33). Figure 14 shows the relation between \(R_{pew} \) and \(R_e \) or \(\sigma_0 \). They approximately hold the next relation:

\[
R_e = 5.5 R_{pew} \quad \ldots \ldots \ldots (12)
\]

From Eq. (10), we can obtain the relation:

\[
\sigma_0 = 450 \sigma_0^t \quad \ldots \ldots \ldots (13)
\]

We cannot explain the phenomena of non-propagation of a crack at a notch using
the stress intensity factor because the stress intensity factor increases monotonically with an increasing crack length from the notch. So, we will investigate this phenomenon with the relation of Eq. (7). For convenience sake, we use the equation for a circular hole for stress distribution near a notch root on tensile loading. The stress σ_0 at the distance a from the notch root is shown as follows:

$$\sigma_0 = \frac{\sigma_{\text{max}}}{2} \left(\frac{1}{1+\sqrt[3]{1 \pm \frac{1}{3} \sqrt{1+\frac{1}{3}}}} \right) \cdots (14)$$

where, σ_{max} is the stress at the notch root and a is the notch radius. The stress intensity factor of a crack which emanates from a notch root is fairly well expressed by using the crack length a and the stress σ_0. And $R_{\text{p}} = \frac{\sigma_0}{\sigma_{\text{max}}}$ is small enough comparing with the notch radius as shown later. Then we can obtain the expression $R_{\text{p}} = \frac{\sigma_0}{\sigma_{\text{max}}}$, using the value C of Eq. (8) as 0.1 and ignoring the effect of the slope of stress.

$$R_{\text{p}} = 0.1259 \frac{a}{\sigma_{\text{max}}} (\text{sec 0.258} - 1) \cdots (15)$$

Figure 15 shows the calculated results of above equation. When the maximum stress at a notch root is larger than the yield strength of the material, $R_{\text{p}} = \frac{\sigma_0}{\sigma_{\text{max}}}$ has a maximum value. If $R_{\text{p}} = \frac{\sigma_0}{\sigma_{\text{max}}}$ is smaller than $R_{\text{p}} = \frac{\sigma_0}{\sigma_{\text{max}}}$, a crack cannot propagate any more even after the crack initiates from the notch root. Above critical condition that on the branch point the maximum stress at a notch root is close to the yield strength of material, it is the same as formerly obtained by Ishibashi. From Fig. 15, when σ_{max} is the minimum value of σ_0, the minimum value of R_{p} is obtained as about 0.022, namely $\sigma_0 = 46$ $R_{\text{p}} = 4.6$. This relation is close to Eq. (11) obtained by experiment.

5. Conclusions

From the test results on the fatigue limit of mild steel which cracks, it was tried to bridge the gap between the continuum mechanics aspects and the metallographic aspects and the relations among various characteristics at fatigue limit were investigated. The main results obtained are as follows.

1. The relation between alternating fatigue limit and crack length was well expressed by assuming that the cyclic plastic zone size R_{p} is a material constant R_{p}.
2. The persistent slip band zone size R_{p} is about one tenth of R_{p}, and is close to the grain size at fatigue limit.
3. Under the small scale yielding condition, the fatigue limit of a cracked material can be expressed by the stress intensity factor, which is not so much influenced by the variety of steels.

4. R_{p} is close to the length corresponding to the fatigue limit of a plain specimen and the material constant which was already obtained in the criterion for the fatigue limit of crack initiation at a notch root.
5. The characteristic of non-propagation of a crack in a sharp notched cyclic plastic zone size at a crack tip, and the critical notch root radius at the branch point is about five times of R_{p}.

Acknowledgement

The authors are very grateful to Professor E. Kitagawa, Tokyo University, Professor H. Nakasawa, Tokyo Institute of Technology, and Mr. S. Kusumoto, manager of the 3rd Department, Hitachi Research Laboratory, for their valuable suggestions.

References

