Fluid Inertia Effects on the Characteristics of Spherical Hydrostatic Bearings (Part 1 Bearing Forces) *

By Yuichi SATO**, Akiyoshi TAMURA***

Based on a first-order perturbation solution in a modified Reynolds number, an analysis is presented to determine the fluid inertia effects on the dynamic characteristics of a spherical hydrostatic bearing that has a continuous spherical surface. This analysis demonstrates that fluid inertia influences the load capacity and dynamic properties. The corrections to the conventional elastic and damping coefficients derived on the assumption that inertia forces are negligible, are found not too small to neglect when inertia parameter $\delta = \omega^2 h^2 / \rho a > 0.1$ ($\omega =$lubricant density, $\omega =$angular velocity, $\rho =$radius of spherical bearing, $a =$ambient pressure). And the acceleration coefficients may become significant when the displacement of a rotor from the bottom of the bearing is small.

Key Words: Lubrication, Vibration of Rotating Body, Spherical Hydrostatic Bearing, Inertia Effect, Dynamic Characteristics

1. Introduction

Classical lubrication theory assumes a laminar flow and neglects inertia terms in the equation of motion governing a lubricant film flow. Although these assumptions are justified for small values of the Reynolds number, they are valid in the majority of bearing applications. However, inertia effects may become noticeable at high operating speeds without affecting the assumption of laminar flow. So far several investigators have examined the fluid inertia effects on the static characteristics of spherical hydrostatic bearings. Dowson and Taylor have carried out theoretical and experimental works and concluded that the inertia force alters the pressure distribution considerably while the inertia effects on load capacity are rather small.

This paper describes the inertia effects on the dynamic characteristics of spherical hydrostatic bearings. This analysis, which employs a first order perturbation expansion in Reynolds number, demonstrates that fluid inertia effects on the dynamic properties appear even for small values of Reynolds number.

2. Nomenclature

α_{ac} : acceleration coefficient

$\delta = \omega^2 h^2 / \rho a$

$b_{ii}(i,j=x,y) :$ damping coefficients

$B_{ii} = b_{ii}(e_0,0)/p^{*}$$e_0$: radial clearance

$e_{r,a} :$ radial and axial displacements

$h = \text{film thickness} (R = h/c)$

$h_{ii}(i,j=x,y) :$ elastic coefficients

$(c_{ii} = h_{ii}(e_0,0)/p^{*})$

$p :$ pressure distribution ($P = p/p^{*}$)

$p_{i} :$ pressure at inlet ($P_i = p_i/p^{*}$)

$p^{*} :$ ambient pressure

$r :$ bearing radius

$R = r_1/r_2$

$r, \theta, \phi :$ spherical coordinates (Fig. 1)

$R_1, \theta_1, \phi_1 :$ spherical coordinates (Fig. 1)

$\tau :$ time ($\tau = \omega t$)

$v_r, v_{\theta}, v_{\phi} :$ velocity components in r, θ, ϕ

$V_r = v_r/r_2$, $V_{\theta} = v_{\theta}/r_2$, $V_{\phi} = v_{\phi}/r_2$

* Receive 15th June, 1981.
** Associate Professor, Saitama University, Chino-ku, 255, Urawa, Saitama
*** Professor, Tokyo Institute of Technology, Meguro-ku, Tokyo

Fig. 1 Spherical hydrostatic bearing
3. Analysis

3.1 The governing equations

This paper is concerned with a spherical hydrostatic bearing of the form shown in Fig.1. With the assumptions of usual lubrication theory, the governing equations for an incompressible fluid are written in dimensionless form as:

\[\frac{\partial p}{\partial z} = 0 \]

\[R_s \frac{\partial^2 V_x}{\partial z^2} - V_x \frac{\partial^2 V_y}{\partial z \partial \theta} - V_x \frac{\partial V_y}{\partial \theta} = \frac{A_s}{\sin \theta} \frac{\partial^2 V_x}{\partial \theta^2} \]

\[R_s \frac{\partial^2 V_y}{\partial z^2} + V_x \frac{\partial^2 V_y}{\partial z \partial \theta} + V_x \frac{\partial V_y}{\partial \theta} + V_y \frac{\partial^2 V_y}{\partial \theta^2} = \frac{A_s}{\sin \theta} \frac{\partial^2 V_y}{\partial \theta^2} \]

\[\frac{\partial V_x}{\partial z} + \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(V_y \sin \theta + \frac{\partial V_y}{\partial \theta} \right) = 0 \]

where \(A_s = \frac{c_s}{\rho \omega^2} \) and \(P_s = c_s \frac{\partial p}{\partial \theta} \).

The left hand sides in Eqs. (1) and (3) are the contributions from inertia forces which have been ignored in the classical theory. A parameter \(Re_s \) accounts for the inertia forces, and it is generally a small value. Equation (2) only expresses that the pressure does not vary across the film, and is of no interest in further analysis. To investigate the inertial effects, a first-order perturbation solution in \(Re_s \) is carried out by setting \(\psi, V_{x0}, V_{y0} \). Substituting Eqs. (5) and (6) into Eqs. (2) through (4) and rearranging the terms of zeroth and first order in \(Re_s \) yields the following equations:

\[(R_s)^{*} = -\frac{c_s}{\rho \omega^2} \frac{\partial}{\partial \theta} \left(V_{y0} \sin \theta \right) = 0 \]

\[\frac{\partial}{\partial \theta} \left(V_y \sin \theta \right) = 0 \]

\[\frac{\partial}{\partial \theta} \left(V_y \sin \theta \right) = 0 \]

\[\frac{\partial}{\partial \theta} \left(V_y \sin \theta \right) = 0 \]

The velocity boundary conditions are:

\[\zeta = 0; \quad V_{x0} = 0; \quad V_{y0} = 0; \quad \zeta = H; \quad V_{x0} = \psi \sin \theta; \quad V_{y0} = -\frac{\partial H}{H^2} \frac{\partial \psi}{\partial \theta}; \quad \psi = 0 \]

By substituting these expressions into Eqs. (6), the boundary conditions are written as:

\[(R_s)^{*} = \frac{\partial V_{y0}}{\partial \theta} + V_{y0} \frac{\partial \psi}{\partial \theta}; \quad \psi = 0 \]

\[(R_s)^{*} = \frac{\partial V_{y0}}{\partial \theta} + V_{y0} \frac{\partial \psi}{\partial \theta}; \quad \psi = 0 \]

Integrating Eqs. (7) and (8) twice yields the velocity profiles of classical lubrication theory:

\[V_{x0} = \frac{c_s}{\rho \omega^2} \frac{\partial}{\partial \theta} \left(\frac{1}{2} \psi \left(\psi - \frac{H^2}{2} \right) \right) \]

\[V_{y0} = \frac{A_s}{\rho \omega^2} \frac{\partial}{\partial \theta} \left(\frac{1}{2} \psi \left(\psi - \frac{H^2}{2} \right) \right) \]

Inserting \(V_{x0} \) and \(V_{y0} \) into the continuity equation (9), and applying the boundary condition at \(\zeta = H \), we obtain \(V_{y0} \) and a differential equation for \(\psi \) as:

\[\frac{\partial V_{y0}}{\partial \theta} = \frac{A_s}{\rho \omega^2} \frac{\partial}{\partial \theta} \left(\frac{1}{2} \psi \left(\psi - \frac{H^2}{2} \right) \right) = \frac{2}{\rho \omega^2} \frac{\partial}{\partial \theta} \left(\frac{1}{2} \psi \left(\psi - \frac{H^2}{2} \right) \right) \]

Since \(\psi \) is independent of \(\zeta \), integrating Eqs. (10) and (11) twice with respect to \(\zeta \), and using Eqs. (16) through (18), we obtain \(V_{y0} \) and \(V_{y0} \). Substituting \(V_{y0} \) and \(V_{y0} \) into Eq. (12) and applying the boundary conditions Eqs. (15), we get a differential equation for \(\psi \) as:

\[\frac{\partial}{\partial \theta} \left(\frac{1}{2} \psi \left(\psi - \frac{H^2}{2} \right) \right) = \frac{1}{\rho \omega^2} \frac{\partial}{\partial \theta} \left(\frac{1}{2} \psi \left(\psi - \frac{H^2}{2} \right) \right) \]

3.2 Bearing forces

We will treat radially unloaded bearings. Then a shaft axis coincides with the z-axis in a static equilibrium state. We assume that the pressure distributions by small vibrations about z-axis can be written in the following forms:

\[P_{z} = P_{z0} + r \psi + r \frac{\partial \psi}{\partial r} \]

\[P_{r} = P_{r0} + r \psi + r \frac{\partial \psi}{\partial r} \]
where: ed/dt. Substituting these expressions into Eqs. (19) and (20), together with equations:

\[
\begin{align*}
H &= H_0 e^{i \theta} \cos \theta / \sin \theta, \\
H &= 1 - e^{i \theta} \cos \theta
\end{align*}
\]

and collecting terms of like order results in zeroth and first order equations for P_j ($1 \leq 0, 1, j = 0 \sim 7$).

The differential equations for P_0 and P_0 are written as:

\[
\begin{align*}
\sin \theta \frac{\partial}{\partial \theta} \left[H_0 \sin \theta \frac{\partial P_0}{\partial \theta} \right] &= 0 \\
\sin \theta \frac{\partial}{\partial \theta} \left[H_0 \sin \theta \frac{\partial P_0}{\partial \theta} \right] &= \frac{12}{A} \sin \theta \frac{\partial}{\partial \theta} \left(\sin \theta S_a \right)
\end{align*}
\]

where

\[
S_a = - \frac{1}{120} \left[H_0 \frac{\partial P_0}{\partial \theta} \frac{\partial P_0}{\partial \theta} + 2H_0 \frac{\partial P_0}{\partial \theta} \left(\frac{\partial P_0}{\partial \theta} \right)^2 \right] - \frac{H_0}{40} \sin \theta \cos \theta
\]

Integrating Eqs. (24) and (25) twice with respect to θ and applying the boundary conditions:

$\theta = \theta_0 : P_0 = P_a, \quad P_0 = 0, \quad \theta = \theta_0 : P_a = 1, \quad P_a = 0$

we obtain

\[
\begin{align*}
P_0 &= \frac{3}{30} \int_0 \left(\sin \theta \sec \theta \right) - \left(\sin \theta \sec \theta \right) \frac{K(\theta)}{K(\theta)} \\
K(\theta) &= \int_0^1 \left(\sin \theta \sec \theta \right) \frac{P_0}{H_0 \sin \theta}
\end{align*}
\]

where

P_0 is the pressure distribution due to inertia effects. When we consider only centrifugal effects, the second term in the right hand side of Eq. (28) vanishes \cite{2}.

The axial load capacity F_a is calculated from the following expressions:

\[
F_a = \int_0^1 \left(P_a - 1 \right) \sin \theta \cos \theta \, d\theta
\]

\[
F_a = \int_0^1 \left(P_a - 1 \right) \sin \theta \cos \theta \, d\theta
\]

where

\[
F_a = \frac{3}{30} \int_0^1 \left(\sin \theta \sec \theta \right) - \left(\sin \theta \sec \theta \right) \frac{K(\theta)}{K(\theta)} \\
K(\theta) &= \int_0^1 \left(\sin \theta \sec \theta \right) \frac{P_0}{H_0 \sin \theta}
\]

In this paper we set $\theta_0 = 10^\circ$ and $\theta_0 = 30^\circ$. The influence of these values on the load capacity and the dynamic properties will be discussed in the following paper.

The dependence of load capacity F_a on ϵ_3 at different values of Δ is shown in Fig. 3. The load capacities are dependent on F_a and not on Λ. The load capacity increases with the axial displacement, i.e., $\Lambda(1-\epsilon_3)$. Fig. 3 shows F_a as a function of

![Fig. 2 F_a versus ϵ_3](image1)

![Fig. 3 F_a versus ϵ_3](image2)
As the axial displacement increases, \(F_{ax} \) becomes positive from negative. Thus, for large values of axial displacement, i.e., \(\varepsilon_z < 0 \), fluid inertia effects increase load capacity \(F_{ax} \) since \(F_{ax} \) is positive. When the rotor speed is high, the value of \(\lambda \) is generally low. Under such a condition, the second term in the right hand side of Eq. (34) is much smaller than the first term which is a contribution from the centrifugal force only. In other words, the effect of centrifugal force on load capacity is much greater than that of the other inertial forces.

Considering \(E_{ij} \) (i=0,1, j=1~7) as functions with a period of 2\(\pi \) with respect to \(\varphi \), we set

\[P_i = P_i(\theta) \cos \varphi + P_i(\theta) \sin \varphi \]

.....(35)

Then, the differential equations for \(E_{ij} \) are written as

\[L_i(P_i) = R_i(\theta) \]

\[(i=0, 1, j=1~7, k=\varepsilon, z) \]

.....(36)

where

\[L_i(P_i) = \frac{d}{d\theta}(R_i \sin \theta \frac{dP_i}{d\theta}) - \frac{R_i}{\sin \theta} P_i \]

.....(37)

and \(R^e_i \) and \(R^z_i \) are functions of \(\theta \). Assuming the solution of Eqs. (36) to be written in the form:

\[P_i = \sum_{n} \left(a_n P_{n\theta} + b_n P_{n\phi} \right) \sin \left(\theta - \delta_n \right) \]

.....(38)

since the boundary conditions are

\[\theta = 0; \quad P_i = 0 \]

\[\theta = \theta_0; \quad \delta = 0 \]

we obtain \(P_{n\theta} \) and \(P_{n\phi} \) by Galerkin's method. The final solution for \(P \) is given in the form of Eq. (5).

The radial and tangential bearing forces \(F_r \) and \(F_\theta \) are calculated from the following expressions:

\[F_r = \int_{0}^{2\pi} \int_{0}^{\infty} \rho \cos \varphi \sin \varphi \, r \, dr \, d\varphi \]

.....(39)

By introducing an x-y coordinate system with origin in the bearing center as shown in Fig.4, the bearing forces in the x- and y-directions are:

\[F_x = F_r \cos \phi - F_\theta \sin \phi \]

\[F_y = F_r \sin \phi + F_\theta \cos \phi \]

.....(40)

Considering the relations:

\[\varepsilon_z = \varepsilon \cos \phi \]

\[\varepsilon_z = \varepsilon \sin \phi \]

.....(41)

we obtain \(F_{ax} \) and \(F_{ay} \) as:

\[F_{ax} = K_{ax} \varepsilon_x + K_{ax1} \varepsilon_{x1} + K_{ax2} \varepsilon_{x2} \]

\[F_{ay} = K_{ay} \varepsilon_y + K_{ay1} \varepsilon_{y1} + K_{ay2} \varepsilon_{y2} \]

.....(42)

where

\[K_{ax} = K_{ax0} + R^e \varepsilon_{ax0} \]

\[K_{ax1} = K_{ax10} + R^e \varepsilon_{ax10} \]

\[K_{ax2} = K_{ax20} + R^e \varepsilon_{ax20} \]

.....(43)

\[B_{ax} = B_{ax0} + R^e \varepsilon_{ax0} \]

\[B_{ax1} = B_{ax10} + R^e \varepsilon_{ax10} \]

\[B_{ax2} = B_{ax20} + R^e \varepsilon_{ax20} \]

.....(44)

\[A_{ax} = R^e \varepsilon_{ax0} \]

\[A_{ax1} = A_{ax10} \]

.....(45)

In Eqs. (43) through (45), the terms multiplied by \(\varepsilon \) are corrections due to fluid inertia effects. In addition to the usual elastic and damping coefficients, Eq. (42)

\[K_{xy} \]

.....(46)

\[B_{xy} \]

.....(47)

\[A_{xy} \]

.....(48)

\[K_{yx} \]

.....(49)

\[B_{yx} \]

.....(50)

\[A_{yx} \]

.....(51)

\[K_{xx} \]

.....(52)

\[B_{xx} \]

.....(53)

\[A_{xx} \]

.....(54)

Fig. 6 Elastic coefficient \(K_{xy} \) and damping coefficient \(B_{xx} \) (\(Pa=2 \))

Fig. 5 Elastic coefficient \(K_{xx} \) (\(Pa=2 \))

Fig. 4 Radial and tangential components of lubricant film forces
implies that the bearing forces also depend on the rotor accelerations. These acceleration coefficients A_{xx} and A_{yy} vanish when fluid inertia effects are neglected.

In Figs. 5 through 12 are shown the elastic, damping and acceleration coefficients as functions of ξ_2 and P_0. K_{xx0} depends not on Λ but on P_0. Although K_{xy0} and K_{yx0} depend on Λ, M_{xy0} and M_{yx0} are nearly constant for values of $\Lambda<0.1$. Similarly the coefficients N_{xx0}, K_{xy0}, B_{xx0}, B_{xy0} and M_{xx0}, which are due to fluid inertia effects, are considered to be independent of Λ for values of $\Lambda<0.1$. Fig. 5 shows that K_{xx0} and K_{xxz} increase with the axial displacement, i.e., $C_0(1-\xi_2)$. When the axial displacement is large, K_{xxz} is positive. In other words, the inertia effects increase the radial stiffness K_{xxz} for $\xi_2<0$. On the other hand, when the axial displacement is small, K_{xxz} is negative. Thus, the inertia effects decrease the radial stiffness for $\xi_2>0$. In Fig. 6, as the axial displacement increases, $-K_{xy}$ increases while M_{xy0} decreases. The cross coupling elastic coefficient $K_{xy}=K_{xy0}+R_e^2 K_{xy}$ decreases as the axial displacement increases. Fig. 7 shows that the cross-coupling damping coefficients $B_{xy}=B_{xy0}+R_e^2 B_{xy}$ appears when Re^4/Λ, that is, when the inertia effects are not negligible. The acceleration coefficient M_{xxz} is shown in Fig. 8. As the axial displacement increases, M_{xxz} decreases rapidly at first and then slowly at larger axial displacement.

Figs. 9 and 10 show that K_{xx0}, $-K_{xy}$ and B_{xxz} increase linearly with P_0, while the other coefficients, M_{xy0}, M_{xx0}, M_{xxz} and M_{xxz} are independent of P_0 as shown in Figs. 11 and 12.

Rewriting Eqs. (43), (44) and (45), we get

$$B_{xx}=\frac{B_{xx0}+R_e^2 B_{xx0}}{\Lambda}, \quad B_{yy}=\frac{B_{yy0}}{\Lambda}$$

$$K_{xx}=K_{xx0}+\delta K_{xx1}$$

$$K_{xy}=\frac{K_{xy0}+R_e^2 K_{xy0}}{\Lambda}$$

$$A_{xx}=\delta A_{xx1}$$

Fig. 7 Damping coefficient B_{xy}

Fig. 9 K_{xx0} versus P_0

Fig. 8 Acceleration coefficient A_{xx}

Fig. 10 K_{xy} and B_{xxz} versus P_0
where

\[\delta = \frac{R_v}{A} \](47)

and \(\beta_{xx} = \lambda \beta_{xy}, \beta_{yy} = \lambda \beta_{yx}, \lambda = \frac{K_{xx}}{K_{xy}}, \lambda = \frac{K_{xy}}{K_{xx}}. \) \(\Delta \) and \(\Delta^* \) are small values, and as shown in Fig.6, \(\Delta \) and \(\Delta^* \) are much smaller than \(\lambda \beta_{xy} \) and \(\lambda \beta_{yx} \), respectively. Therefore we make approximations:

\[\beta_{xx} = \lambda \beta_{xy}; \Delta = \beta_{xy} \](48)

Expressions (48) show that the fluid inertia effects on the coefficients \(\beta_{xx} \) and \(\beta_{yy} \) are small.

As mentioned above, \(K_{xy} = \lambda K_{xx}, \beta_{xy} = \lambda \beta_{yx}, \lambda = K_{xx}/K_{xy} \) and \(\lambda = K_{yy}/K_{xy} \) are independent of \(\Delta \). Thus, \(K_{xx}, \beta_{xy} \) and \(\beta_{yx} \) vary linearly with \(\delta \). Calculations are performed for a bearing whose bearing parameters are:

\(D = 10 \text{mm}, C = 15 \text{mm} \).

Setting \(\mu = 0.1 \text{MPa}, \rho = 0.9 \times 10^3 \text{kg/m}^3 \), and \(\mu = 0.01 \text{Pa.s}, \) we get \(\Delta = 0.01 \) and \(\Delta^* = 0.009 \) for \(\omega = 10000 \text{rad/s}, \) and \(\Delta = 0.001 \) and \(\Delta^* = 0.09 \) for \(\omega = 10000 \text{rad/s}. \) In Table 1, the values of the three coefficients are listed. It can be noted that the values of these coefficients vary considerably even when \(\Delta^* \) is small.

Table 1: Changes of coefficients with \(\delta \) (\(\Delta^* = 2, \Delta^* = 1 \))

<table>
<thead>
<tr>
<th>(\delta)</th>
<th>0</th>
<th>0.9</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>0.01</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>(\lambda^*)</td>
<td>0.009</td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>(K_{xx})</td>
<td>0.475</td>
<td>0.555</td>
<td>8.50</td>
</tr>
<tr>
<td>(\beta_{xy})</td>
<td>0.113</td>
<td>11.3</td>
<td></td>
</tr>
<tr>
<td>(\beta_{yx})</td>
<td>0.227</td>
<td>22.7</td>
<td></td>
</tr>
</tbody>
</table>

4. Conclusions

1. The effect of centrifugal force on load capacity is much greater than that of the other inertial forces.
2. The coefficients \(K_{xx} \) and \(\beta_{xy} \) vary linearly with \(\delta = \omega \text{Re}^* \).
3. The inertial effects on \(K_{xx} \) and \(\beta_{xy} \) are quite limited.
4. When inertial forces are considered, the bearing forces depend not only on the rotor displacement and velocity but also on its acceleration. The acceleration coefficients \(\beta_{xx} \) and \(\beta_{yy} \) increase linearly with \(\delta \).

Appendix

\[S_1 = \sin \theta = \frac{-H/2}{T} + T, \quad S_2 = \frac{-H}{2} T - T_2. \]

\[T_1 = \frac{A_1}{2} \begin{bmatrix} H & 2 \Pr & H & 2 \Pr & 2 \Pr & 3 \Pr & \frac{A_1}{2} & H & 2 \Pr & 2 \Pr & 3 \Pr & 2 \Pr \end{bmatrix} \]

\[+ \frac{A_2}{2} \begin{bmatrix} \frac{H^2}{2} & H^2 & 2 \Pr^2 & 2 \Pr^2 & \frac{H^2}{2} \end{bmatrix} \]

\[+ \frac{A_3}{2} \begin{bmatrix} \frac{H^3}{3} & \frac{H^3}{3} \end{bmatrix} \]

\[- \frac{H^2}{2} \begin{bmatrix} \frac{H^2}{2} & \frac{H^2}{2} \end{bmatrix} \]

\[+ \frac{A_4}{2} \begin{bmatrix} \frac{H^3}{3} & \frac{H^3}{3} \end{bmatrix} \]

\[- \frac{H^2}{2} \begin{bmatrix} \frac{H^2}{2} & \frac{H^2}{2} \end{bmatrix} \]

\[- \sin \theta \begin{bmatrix} \frac{H^2}{2} & \frac{H^2}{2} \end{bmatrix} \]

\[- \cos \theta \begin{bmatrix} \frac{H^2}{2} & \frac{H^2}{2} \end{bmatrix} \]
References