On Integral Equation Methods for Crack Problems

By Kazuo TAKAKUDA**, Takashi KOIZUMI** and Toshikazu SHIBOYA**

In this paper, integral equation methods for boundary value problems of elastic bodies with cracks are investigated. We use Somigliana's identities to represent displacements in elastic bodies, and deduce integral equations from the boundary conditions on the crack surfaces. In these integral equations, unknown functions are displacement differences between the upper and the lower crack surfaces. Divergent integrals are contained and they are evaluated in the sense of Hadamard's finite parts. The integral equations are solved analytically for the case of a penny-shaped crack. Methods for numerical solutions of the equations are also studied.

Key Words: Elasticity, Crack Problem, Integral Equation Method, Elastic Potential, Numerical Analysis

1. Introduction

In connection with the fracture strength of materials, it is important to analyse the stresses induced in elastic bodies with cracks. However, the analytical solutions are available only for such simple cases as a penny shaped crack in an infinite body. Hence several methods for numerical solutions have been developed, by which we can analyse elastic bodies with more complex configurations.

One method among them utilize Somigliana's identities, and reduce elastic problems to integral equations (direct methods). This method has the following advantages: (i) it enables us to treat bodies with arbitrary shape if it is used together with the boundary integral equation (direct methods); (ii) unknown displacements or tractions on surfaces are obtained as the solutions of the integral equations. But it also has some difficulties, i.e., contained in the equations there are the tangential derivatives of the unknown displacement differences between the upper and the lower crack surfaces. In contrast, the body force technique has not such difficulty, no derivatives appearing as unknown functions wherein, and it is used effectively for crack problems.

In this paper, we remedy this shortcoming of the method for crack problems based on Somigliana's identities. We deduce integral equations for crack problems in which the unknown functions are the displacement differences between the upper and the lower crack surfaces, themselves. Divergent integrals contained, which have been avoided in previous studies and resulting in the appearance of the derivatives of unknowns, are evaluated in the sense of Hadamard's finite parts. An example of the analytical solutions of the integral equations is given, for the case of a penny-shaped crack in an infinite body. We also investigate the methods for numerical solutions of the integral equations.

2. Integral Equations for Crack Problems

We use Cartesian coordinates system x. Subscripts of English letters take the values 1, 2 or 3, and those of Greek letters, 1 or 2. Summation convention is assumed, and a subscript following a comma (,) indicates differentiation (d/dx_i) with respect to the coordinate variable of the point where the displacement is defined.

In general, the displacement u_i induced in an elastic body can be expressed in terms of the displacements u_i and the tractions $t_i^{(e)}$ on the surface S of the elastic body, and the body forces f_i within the body D.

$$u_i(P) = \int_{S}^{(e)} u_i(Q) T_i^{(e)}(P, Q) dS(Q)$$
$$- \int_{S} u_i(Q) T_i^{(e)}(P, Q) dS(Q)$$
$$+ \int_{F}^{(e)} u_i^{(p)}(P, Q) dS(Q) \quad (P \in D) \quad (1)$$

This relation is known as Somigliana's identity, in which $U_i^{(p)}(P, Q)$ denotes the displacement in i direction at a point P in an infinite elastic body when unit concentrated body force in j direction is applied at a point Q. With the modulus of rigidity μ, Poisson's ratio ν and the distance R between points P and Q, it is represented in the form

$$U_i^{(p)}(P, Q) = \frac{1}{16\pi\mu} \frac{3-4\nu}{1-\nu} \frac{1}{R^2}$$
$$+ \frac{1}{16\pi\mu} \frac{1}{1-\nu} \frac{1}{R^2} \quad (2)$$

* Received 1st October, 1982.
** Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, Tokyo.
Further, \(T^{N}(P, Q) \) is the displacement in \(i \) direction at a point \(P \) in an infinite elastic body when an infinitesimal dislocation loop with unit magnitude in \(j \) direction exists at a point \(Q \) on a plane normal to a vector \(n \). With the elastic constants tensor \(C_{ijkl} \)

\[
C_{ijkl} = \frac{2\mu}{1 - \nu^2} \delta_{ij} \delta_{kl} + \mu \delta_{ik} \delta_{jl} + \mu \delta_{il} \delta_{jk} \quad \cdots (3)
\]

and the unit outward normal vector \(n \) of the surface \(S \), it is represented in the form

\[
T^{N}(P, Q) = C_{ijkl} n_{i} u_{l}(Q) u_{k}(P) \quad \cdots (4)
\]

Now we consider an infinite elastic body occupying the whole space \(x_{1}, x_{2}, x_{3} \), and containing a crack on the plane \(x_{1}=0 \) as shown in Fig.1. External forces are applied on the crack surfaces. The displacements and the stresses decrease to zero at infinity. We regard the elastic body as either (i) an infinite body containing a cavity which collapses to a crack in the limit, or (ii) two semi-infinite bodies \(x_{1}>0 \) and \(x_{1}<0 \) which are joined over the plane \(x_{1}=0 \) excluding the crack surface \(S \). Anyway, Eq. (1) gives a representation formula for the displacements in this elastic body

\[
\begin{align*}
\alpha_{i}(P) &= \int_{S} (u_{i}(Q))^{+} + \int_{S} (u_{i}(Q))^{-} \\
\quad &\times U^{N}(P, Q) dS(Q) - \int_{S} u_{i}(Q)^{+} \left[T^{N}(P, Q) \right]^{+} dS(Q) \\
\quad &+ \int_{S} u_{i}(Q)^{-} \left[T^{N}(P, Q) \right]^{-} dS(Q) \quad (P \in D) \\
\end{align*}
\quad \cdots (5)
\]

where \([\cdot]^{+} \) indicates a value concerned with the upper surface \(S \) and \([\cdot]^{-} \) indicates a value concerned with the lower surface \(S \).

We observe in the expression (5) that the first and the third terms of the right hand side are known. Hence if the displacement difference between the upper and the lower crack surfaces \((u_{i}(Q))^{+} - (u_{i}(Q))^{-} \) is determined such that the boundary condition on the crack surfaces is satisfied, then it may be substituted into Eq. (5) and give the displacement field within the elastic body. In order to realize this procedure, we require a representation formula for the tractions induced on the crack surfaces, accompanying the displacement field (5).

If we substitute Eq. (5) into the relation between displacements and stresses

\[
\alpha_{i}(P) = \frac{C_{ijkl} n_{i} u_{k}(P)}{C_{ijkl} n_{i} u_{k}(P)} \quad \cdots (6)
\]

then we have the stresses induced in the elastic body. With notations

\[
\begin{align*}
\Sigma_{i}(Q) &= (u_{i}(Q))^{+} + (u_{i}(Q))^{-} \quad \cdots (7) \\
\Delta_{i}(Q) &= (u_{i}(Q))^{+} - (u_{i}(Q))^{-} \quad \cdots (7)
\end{align*}
\]

the stress components \(\sigma_{ij}(P) \) concerned with surface tractions are expressed in the form

\[
\sigma_{ij}(P) = \int_{S} \Sigma_{i}(Q) C_{ijkl} u_{l}(P) dS(Q) - \int_{S} \Delta_{i}(Q) C_{ijkl} T^{N}(P, Q) dS(Q) \\
\quad + \int_{S} \Sigma_{i}(Q) C_{ijkl} u_{l}(P) dS(Q) \quad (P \in D) \quad \cdots (8)
\]

For the first and the third terms in the above formula, we can easily obtain limits as the point \(P \) approaches the point \(P_{0} \) on the crack surface \(S^{m} \). For the second term, however, the integrand

\[
\begin{align*}
T^{N}(P, Q) &= \frac{1}{8\pi} \left(1 - \frac{2\nu}{1 - \nu^2} \frac{1}{R^{3}} \right) \left[(n_{i} \delta_{kl} - n_{k} \delta_{il}) - 3(n_{i} R_{k} R_{l} - n_{k} R_{i} R_{l} - 3n_{i} R_{k} R_{l} R_{j}) \right] \\
\end{align*}
\quad \cdots (9)
\]

has a singularity of \(O(r^{-4}) \) as \(R \to 0 \). Therefore it is not possible to obtain a limit in the present form. We rewrite this term assuming that the displacement difference \(\Delta u_{i}(Q) \) is differentiable and can be expanded near a point \(P_{0} \) in the form

\[
\Delta u_{i}(Q) = \Delta u_{i}(P_{0}) + (x_{i}(Q) - x_{i}(P_{0})) \Delta u_{i}(P_{0}) + \Delta u_{i}(Q, P_{0}) \quad \cdots (10)
\]

where the function \(\Delta u_{i}(Q, P_{0}) \) is \(O(r^{2}) \) as \(r = |Q - P_{0}| \to 0 \).

Then the second term in the right hand side of Eq. (8) becomes

\[
\begin{align*}
\int_{S} \Delta u_{i}(Q) C_{ijkl} T^{N}(P, Q) dS(Q) &= \int_{S} \Delta u_{i}(P_{0}) C_{ijkl} T^{N}(P, Q) dS(Q) \\
\quad + \int_{S} (x_{i}(Q) - x_{i}(P_{0})) \Delta u_{i}(P_{0}) C_{ijkl} T^{N}(P, Q) dS(Q) \\
\quad + \int_{S} \Delta u_{i}(Q, P_{0}) C_{ijkl} T^{N}(P, Q) dS(Q) \quad \cdots (11)
\end{align*}
\]
First we calculate the limit of the first term in the right hand side of Eq. (11) as \(P = P_0 \). We divide the integral region \(S_0 \) into \(S_1 \) and \(S_1^- - S_0 \), where \(S_0 \) is a circular region with center \(P_0 \) and radius \(\varepsilon \) as Fig. 2 shows.

\[
\int_{S_0} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) = \int_{S_1} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) + \int_{S_1^- - S_0} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q)
\]

In the first term of the right hand side of the above expression, there appear definite integrals as \(\int_{S_1} 1/R^2 d\sigma \), each of which is evaluated in a closed form as

\[
\int_{S_1} 1/R^2 d\sigma = 2\pi \int_{1/R^2 d\sigma} = 2\pi \left[1/(\beta - 1 - (\varepsilon^2 + \beta^2)^{1/2}) \right]
\]

If these results are substituted into the first term of Eq. (12), then we see that the coefficients of the term \(1/\delta \) cancel out each other. So the first term itself turns out to be bounded and has a definite limit as \(P = P_0(\delta \to 0) \). In this place, we have the following integral formulas deduced from the definition of the PF integrals (Appendix 1) as:

\[
P_f \int_{S_1} 1/R^2 d\sigma = -2\pi \varepsilon
\]

Hence the limit value of the first term as the point \(P \) approaches \(P_0 \) is given by setting \(P = P_0 \) in the integrand and evaluating the integrals in the sense of \(P_f \) integrals. On the other hand, the second term in the right hand side of Eq. (12) is a continuous function. Thus we have

\[
\lim_{P \to P_0} \int_{S_1} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) = P_f \int_{S_1} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) \quad (P_0 \in S_0)
\]

In a similar manner we have limits of the second and the third terms in the right hand side of Eq. (11).

\[
\lim_{P \to P_0} \int_{S_0} [x(P) - x(P_0)] d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) = P_f \int_{S_0} [x(P) - x(P_0)] d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) \quad (P_0 \in S_0)
\]

\[
\lim_{P \to P_0} \int_{S_0} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) = P_f \int_{S_0} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) \quad (P_0 \in S_0)
\]

Summing up the above results, the representation formula for the tractions on the crack surface is given by

\[
\left[\tau(P) \right] = \frac{1}{2} \sum_{i} (\Sigma_{i}(P)) + P_f \int_{S_0} [\Sigma_{i}(P)] T_{1i}^{11}(P, Q) d\sigma(Q)
\]

\[
- P_f \int_{S_0} d\mathbf{u}(P_0) C_{1111}(T_{0}^{11}(P, Q)) d\sigma(Q) + \int_{S_0} [\Sigma_{i}(P)] T_{1i}^{11}(P, Q) d\sigma(Q) \quad (P_0 \in S_0)
\]

In particular, in the cases that external forces act in opposite directions and have the same magnitudes on the upper and the lower crack surfaces \(\sum_{i}(P)=0 \), and the body forces are absent \(\Sigma_{i}(P)=0 \), Eq. (16) becomes

\[
\sigma_{ii}(P) = \frac{1}{4\pi} \int_{S_0} \frac{1}{1-v} \frac{\tau_{ii}^{11}(P)}{R} d\sigma(Q) + \frac{1}{4\pi} \int_{S_0} \left[\Sigma_{i}(P) T_{1i}^{11}(P, Q) + \tau_{ii}^{11}(P) \right] d\sigma(Q)
\]

\[
\sigma_{ii}(P) = \frac{1}{4\pi} \int_{S_0} \frac{1}{1-v} \frac{\tau_{ii}^{11}(P)}{R} d\sigma(Q) + \frac{1}{4\pi} \int_{S_0} \left[\Sigma_{i}(P) T_{1i}^{11}(P, Q) + \tau_{ii}^{11}(P) \right] d\sigma(Q)
\]

\[
\sigma_{ii}(P) = \frac{1}{4\pi} \int_{S_0} \frac{1}{1-v} \frac{\tau_{ii}^{11}(P)}{R} d\sigma(Q)
\]

where \(R \) is the distance between points \(P \) and \(Q \).

Consequently, if we determine \(d\mathbf{u}(P_0) \), or the unknown displacement differences between the upper and the lower crack surfaces, such that Eq. (16) or (17) are satisfied for the given tractions \(\sigma_{ii}(P) \) on the crack surfaces, then we substitute it into Eq. (5) and obtain the solutions for the crack problems. From the uniqueness theorem for elastic problems, we see that the solutions \(d\mathbf{u}(P_0) \) of the integral equations (16) or (17) are also unique. Moreover,
the stress intensity factors can be obtained easily, since the relations between the displacement differences Δu_i and the stress intensity factors are expressed in the form

$$\Delta u_i = 2(2\pi)^{1/2}(1-v)/\mu K_{\alpha i}^{1/2}, \Delta u_2 = 2(2\pi)^{1/2}(1-v)/\mu K_{\alpha 2}^{1/2}, \Delta u_3 = 2(2\pi)^{1/2}(1-v)/\mu K_{\alpha 3}^{1/2}$$

where α denotes the distance from the crack edge, $\mu[u_\alpha]$ is the displacement in the direction parallel to the crack plane and perpendicular to the crack edge.

In the investigations reported previously, the integral equations for crack problems are expressed in the forms

$$\sigma_n(R_0) = \frac{1}{2\pi} - \frac{1}{2\pi} \int R_n(1-v)\left[R_0, R_0 - R_n, R_0 + 3R_0, R_0 - R_n\right] \Delta u_1(Q) ds(Q) \quad (n=1, 2)$$

The second and the third ones of Eq. (17) are identically satisfied if we put $\Delta u_1(r, \theta) = \Delta u_2(r, \theta) = 0$.

Coppens has formulated a punch problem, for which a rigid circular punch indents an elastic plane half space, as an integral equation similar to Eq. (20). The equation was reduced to the form of Abel's type integral equation, and he could obtain a simple, clear solution. We expect that Eq. (20) for the crack problem can be solved similarly.

We begin with writing

$$p(r, \theta) = \sum_{n} p_n(r) \cos n \theta, \quad \Delta u_1(r, \theta) = \sum_{n} d_n(r) \cos n \theta$$

and substituting them into Eq. (20). Since the two-dimensional Pf integral can be evaluated by successive applications of the one-dimensional Pf integral with respect to r and θ, Eq. (21) takes the form

$$\frac{\mu}{4\pi(1-v)} \int \left[P \int [r \int r_n^{1/2} \frac{1}{\sqrt{(r^2-r_0^2)(r^2-t_0^2)}}] r_n^{1/2} d_n(r) dr_0 \right] ds(r) dr = -\sum_{n} d_n(r) \cos n \theta$$

Rewriting the inner integral in accordance with the integral formula (39) and comparing the coefficients of circular functions in both sides, we have

$$\frac{\mu}{\pi(1-v)} \frac{1}{r} \left[P \int [r \int r_n^{1/2} \frac{1}{\sqrt{(r^2-r_0^2)(r^2-t_0^2)}}] r_n^{1/2} d_n(r) dr_0 \right.$$

$$+ P \int [r_n^{1/2} \frac{1}{\sqrt{(r^2-r_0^2)(r^2-t_0^2)}}] r_n^{1/2} d_n(r) dr_0] = p_n(r) \quad (n=0, 1, 2, \ldots, 0 \leq r < a)$$

Further, assuming that the order of integrations may be reversed, we have

$$P \int [r_n^{1/2} \frac{1}{\sqrt{(r^2-r_0^2)(r^2-t_0^2)}}] r_n^{1/2} d_n(r) dr_0] = \frac{\pi(1-v)}{r} p_n(r) \quad (n=0, 1, 2, \ldots, 0 \leq r < a)$$

The solution $d_n(r)$ of this Abel's type integral equation is expressed in the form

$$d_n(r) = \frac{4(1-v)}{\pi n} \int_0^r \int_0 r_n^{1/2} \frac{1}{\sqrt{(r^2-r_0^2)(r^2-t_0^2)}} \frac{d_n(r)}{r_0} dr_0 \quad (n=0, 1, 2, \ldots)$$

The unknown displacement difference Δu_1 is obtained after the substitution of Eq. (23) into the second of Eq. (21).

In general, we have to solve the integral equation (17) approximately. On that occasion, the Pf integrals must be evaluated numerically. Hence we first study the quadrature formula for the following Pf integral over the plane region S surrounded by the contour C as shown in Fig. 3.

\[I = Pf \int \left| R(P, Q) \right|^{-\beta} f(Q) dS(Q) \quad (P, Q \in S) \]

When we derive the integral equation (17), we assume that the density function has an expansion as Eq. (10). In this place, we further assume that the density function is twice differentiable and can be expanded near a point \(P_0 \) in the form

\[f(Q) = f(P_0) + [x_s(Q) - x_s(P_0)] f_s(P_0) + \frac{1}{2} [x_s(Q) - x_s(P_0)] [x_s(Q) - x_s(P_0)] f_{ss}(P_0) + f_s(Q, P_0) \]

where function \(f_s(Q, P_0) \) is \(O(R^4) \) as \(R \to 0 \). Then the Pf integral (24) becomes

\[I = Pf \int \left| R(P, Q) \right|^{-\beta} f_s(Q) + f_s(P_0) Pf \int \left[x_s(Q) - x_s(P_0) \right] f_{ss}(P_0) \left| R(P, Q) \right|^{-\beta} dS(Q) \]

\[+ \frac{1}{2} f_s(P_0) Pf \int \left[x_s(Q) - x_s(P_0) \right]^2 f_{ss}(P_0) \left| R(P, Q) \right|^{-\beta} dS(Q) \]

\[+ \int f_s(Q, P_0) \left| R(P, Q) \right|^{-\beta} dS(Q) \]

The last term in the right hand side of Eq. (26) can be evaluated by the use of a common numerical quadrature formula. The first three integrals over the region \(S \) can be transformed into those along the contour \(C \) in the forms

\[Pf \int \left[R(P, Q) \right]^{-\beta} f_s(Q) dS(Q) = \int_{\theta_{\min}}^{\theta_{\max}} \left[R(P, Q) \right]^{-\beta} f_s(Q) \left| R(P, Q) \right|^{-\beta} dS(Q) \]

\[= \int_{\theta_{\min}}^{\theta_{\max}} \left[R(P, Q) \right]^{-\beta} dS(Q) \]

\[= \int_{\theta_{\min}}^{\theta_{\max}} \left[R(P, Q) \right]^{-\beta} dS(Q) \]

where \(r \) denotes the distance between the point \(P_0 \) and the contour \(C \). It is easy to evaluate numerically the right hand sides of Eq. (27). In particular, when region \(S \) is a polygon and the contour \(C \) is composed of straight lines, they are obtained in closed forms.

Next we examine the strategy for discretizing the integral equation (17). A possible one may be as follows: we divide the crack surfaces into polygonal subregions, and assume that the displacement differences \(\Delta u_i \) take constant values throughout these subregions. The approximate solutions are determined such that Eq. (17) is satisfied at suitably selected points. Although this method seems natural, it involves a difficulty that the surface tractions diverge to infinity near interboundaries between subregions. This comes from discontinuities of displacements.

In Fig. 4, we show an example of such distributions of surface tractions obtained from Eq. (17). Computations are carried out on the line \(OA \) of the penny-shaped crack of radius \(a \) subjected to constant internal
pressure \(p \). The surface of the crack is divided into 6 portions in radial direction and 16 in circumferential direction. Throughout each subregion, the displacement difference is assumed to take the exact values \(\Delta u_i = (1 - \nu) \pi p f (x - r) \sqrt{r - x} \) at the centroids \((r = r_i) \). Since the distributions of tractions have abrupt variations within subregions, it may be expected that results utilizing constant density elements are seriously influenced by the choice of the collocation points.

As an alternative, we may utilize the \(C^0 \) elements which have been developed in finite element methods. It realizes continuous and differential displacement discontinuities and the difficulty cited above will not take place. In this paper, however, we try to express the whole \(\Delta u \) over the crack surface by a polynomial. This is a natural extension of the method used in two-dimensional crack problems in which the density of continuously distributed dislocations are expressed by a series of Tchebycheff polynomials.

For the case of an elliptical crack subjected to constant internal pressure or shear \(\mu_0 \), several calculations are carried out and a numerical solution of Eq. (17) is obtained. The elliptical crack with semi-axes \(a \) and \(b \) is represented as \(0 \leq r < 1 \) and \(0 \leq \phi < 2\pi \), where

\[x_1 = a \cos \phi, \quad x_2 = b \sin \phi \quad \text{---(28)} \]

Taking into account the behavior of the solutions, we express the displacement differences \(\Delta u \) in the form

\[\Delta u(x_1, x_2) = |1 - (x_1/a)^2 - (x_2/b)^2|^{1/2} \times \sum_{n \geq 0} \sum_{m \geq 0} a_{nm} T_n(x_1/a) T_m(x_2/b) \quad \text{---(29)} \]

where \(a_{nm} \) is an unknown coefficient to be determined and \(T_n \) denotes the Tchebycheff polynomial of the first kind. The stress intensity factors can be obtained from \(a_{nm} \) using Eq. (18) and the relation

\[|1 - (x_1/a)^2 - (x_2/b)^2|^{1/2} = -2(ab)^{1/2} (a \sin^2 \phi + b \cos^2 \phi)^{1/2} \quad \text{---(30)} \]

where \(r \) denotes the distance from the crack edge.

Substituting Eq. (29) into the integral equation (17), we determine \(a_{nm} \) such that the boundary conditions are satisfied at the selected points. Since the linear dependency of simultaneous equations is expected, the number of collocation points is set larger than that of unknowns, and the least square methods are utilized to determine the coefficients. For evaluation of the \(P \) integrals (27), the crack edge \(\rho = 1.0 \leq \rho < 2\pi \) is divided into intervals with \(d\rho = \pi/18 \) and the composite trapezoidal quadrature formula is applied. Further, for evaluation of integrals of continuous functions, the integral variables are changed into new variables

\[\int_{x_1} f(x_1, x_2) dx_1 dx_2 = \int_{a}^{b} \int_{-1}^{1} (ap \cos \phi, bp \sin \phi) \text{d}\phi \text{d}a \quad \text{---(31)} \]

and the 40-points Gauss's quadrature formula for \(\rho \) and the 48 points trapezoidal quadrature formula for \(\phi \) are applied.

For aspect ratios \(b/a = 1.0, 0.9, \ldots, 0.5 \), we show the coefficients obtained for the pressure case in Table 1, and those for the shear case in Table 2. Poisson's ratio is assumed to be 0.3; the parameters used are \(N = M = 4 \); the locations of the collocation points are illustrated in Fig. 5. The numerical solutions for coefficients other than those shown in these tables are order of \(10^{-4} \) for \(b/a \geq 0.7 \) and of \(10^{-5} \) for \(b/a = 0.6 \) and 0.5, whereas theoretical values for them are zero. The stress intensity factors are obtained to similar accuracy. Thus the numerical solutions obtained seem to have reasonable accuracies.

5. Conclusions

Crack problems are formulated in the

![Fig. 3 Collocation points](image)

| Table 1 Elliptic crack under pressure |
|---|---|---|
| \(b/a \) | num. \(\mu a_{3/2} \rho_0 \) | theor. \(\mu a_{3/2} \rho_0 \) |
| 1.0 | 0.8917 | 0.8913 |
| 0.9 | 0.8442 | 0.8438 |
| 0.8 | 0.7901 | 0.7898 |
| 0.7 | 0.7278 | 0.7283 |
| 0.6 | 0.6545 | 0.6581 |
| 0.5 | 0.5660 | 0.5780 |

| Table 2 Elliptic crack under shear |
|---|---|---|
| \(b/a \) | num. \(\mu a_{3/2} \rho_0 \) | theor. \(\mu a_{3/2} \rho_0 \) |
| 1.0 | 1.0472 | 1.0486 |
| 0.9 | 1.0048 | 1.0067 |
| 0.8 | 0.9562 | 0.9572 |
| 0.7 | 0.9006 | 0.8983 |
| 0.6 | 0.8358 | 0.8278 |
| 0.5 | 0.7561 | 0.7429 |
form of integral equations, whose unknown functions are displacement differences between the upper and the lower crack surfaces. Divergent integrals are contained in the equations: they must be evaluated in the sense of Hadamard's finite parts (Pf integrals). The dominant features of the integral equations are as follows:

1) The unknown functions in the integral equations have physical meaning, i.e., the displacement differences between the upper and the lower crack surfaces.

2) The integral equation can be treated analytically or numerically with ease, since no derivatives of unknown functions are contained.

3) The stress intensity factors are directly determined from the solutions of the integral equations.

4) Amounts of computations required in numerical calculations are relatively little, since only the crack surfaces are considered.

5) Numerical evaluations of the finite parts of divergent integrals are as easy as those of Cauchy's principal values of integrals.

Appendix 1. Finite Parts of Divergent Integrals

When integrands have strong singularities, the integrals diverge and have no meaning. In this case, however, we can evaluate them in the sense of Hadamard's finite part of divergent integrals (Pf integrals).

(i) Functions of one variable

Let \(F(r, \theta) \), a function of \(r \) and \(\theta \), defined on the \(\theta = \tan^{-1}(x_1/x_2) \), be finite and integrable in the region \((0 \leq r < a, 0 \leq \theta < 2\pi) \) and have an expansion near \(r = 0 \) in the form

\[
F(r, \theta) = c_1(\theta)r^{a-1} + \sum_{k=1}^{N} c_k(\theta)r^{a-k} + F_a(r, \theta) \tag{34}
\]

where \(c_1(\theta), c_2(\theta), \ldots c_N(\theta) \) are periodical and integrable functions of \(\theta \) (\(0 \leq \theta < 2\pi \)), and \(F_a(r, \theta) \) is a function integrable in the region \((0 \leq r \leq a, 0 \leq \theta < 2\pi) \). The Pf integral of \(F(r, \theta) \) over the circular region \(D_a(0 \leq r \leq a, 0 \leq \theta < 2\pi) \), \(\text{Pf} \int_{D_a} F(r, \theta) \, dr \), is given by

\[
\text{Pf} \int_{D_a} F(r, \theta) \, dr = \int_0^a c_1(\theta) \, d\theta \cdot \ln a
\]

\[
- \sum_{k=1}^{N} c_k(\theta) \int_0^a (n-2a^{-1}) \cdot a^{-k} \, d\theta + \int_0^a F_a(r, \theta) \, dr \tag{35}
\]

If the integrals exist in the sense of Riemann or Cauchy's principal values, those values in the sense of Pf integrals coincide with them.

Appendix 2. Integrations of Two-dimensional Pf Integrals by Parts

We derive a formula on integrations by parts for two-dimensional Pf integrals. Let functions \(F(r, \theta) \) and \(G(r, \theta) \) have singularities at origin only, and have expansions

\[
F(r, \theta) = \sum_{k=1}^{N} f_k(\theta) r^{a-k} + F_a(\theta, \theta) \quad \text{and} \quad G(r, \theta) = \sum_{k=1}^{N} g_k(\theta) r^{a-k} + G_a(\theta, \theta) \tag{36}
\]

where functions \(F_a(\theta, \theta) \) and \(G_a(\theta, \theta) \) are integrable in the regions \(S \) and \(O(\rho^{a-1}) \) as \(r \to 0 \). Let \(S \), be a circular region with center at origin and radius \(r \). There from it follows that

Fig. 6 Integrations by parts

Fig. 7 Integration contours
\[P\int_{S} \frac{\partial}{\partial x} F(r, \theta) \cdot G(r, \theta) ds = \int_{S} \frac{\partial}{\partial x} F(r, \theta) \cdot G(r, \theta) ds \]
\[+ \int_{\epsilon} \left[\frac{\partial}{\partial x} F_{n}(r, \theta) \cdot G_{n}(r, \theta) + \frac{\partial}{\partial x} F_{n}(r, \theta) \cdot \left(\sum_{\ell=0}^{n} g_{\ell} \rho^{\ell} \right) \right] ds \]
\[+ \int_{\epsilon} \left[\sum_{\ell=0}^{n} f_{\ell} \rho^{\ell} \cdot G_{n}(r, \theta) \right] ds + P\int_{S} \frac{\partial}{\partial x} f(\theta) \cdot \left(\sum_{\ell=0}^{n} g_{\ell} \rho^{\ell} \right) ds \]

If we integrate by parts the first and the second terms in the right hand side of the above equation, they are written in the form

\[\int_{\epsilon} n_{S} F(r, \theta) G(r, \theta) ds \int_{\epsilon} n_{S} F(r, \theta) G(r, \theta) ds - \int_{S} F(r, \theta) \frac{\partial}{\partial x} G(r, \theta) ds \]
\[+ \int_{\epsilon} n_{S} F_{n}(r, \theta) G_{n}(r, \theta) + F_{n}(r, \theta) \frac{\partial}{\partial x} G_{n}(r, \theta) ds \]
\[- \int_{S} F_{n}(r, \theta) \frac{\partial}{\partial x} G_{n}(r, \theta) \]
\[+ \left(\sum_{\ell=0}^{n} f_{\ell} \rho^{\ell} \right) \frac{\partial}{\partial x} G_{n}(r, \theta) ds \]

where \(n \) denotes the \(x \) component of the unit outward normal to \(S \). Further, if we rewrite the third term by carrying out the differentiation indicated, integrating with respect to \(r \), integrating by parts with respect to \(\theta \) and transforming the terms containing \(\epsilon \) into the integral forms with respect to \(r \), then we have

\[\int_{\epsilon} n_{S} \left(\sum_{\ell=0}^{n} f_{\ell} \rho^{\ell} \right) \int_{\epsilon} \frac{\partial}{\partial x} G_{n}(r, \theta) ds \]
\[- \sum_{\ell=0}^{n} \int_{S} \left(\cos \theta \delta_{\ell} + \sin \theta \delta_{\ell} \right) \frac{\partial}{\partial x} G_{n}(r, \theta) ds \]

where the last term is a summation for every combination of \(n \) and \(m \) which satisfies the relation \(n + m + 1 = 0 \). Summing up the above results, the formula on integrals by parts is expressed in the form

\[P\int_{S} \frac{\partial}{\partial x} F(r, \theta) \cdot G(r, \theta) ds = \int_{S} n_{S} F(r, \theta) G(r, \theta) ds - \int_{S} F(r, \theta) \frac{\partial}{\partial x} G(r, \theta) ds \]
\[- \sum_{\ell=0}^{n} \int_{S} \left(\cos \theta \delta_{\ell} + \sin \theta \delta_{\ell} \right) f_{\ell} \cdot g_{\ell} ds \]

where \(\ell = 0 \) into a more convenient form.

First we change the integral variable \(\phi \) into a new variable \(z = x + iy = \exp(i\phi) \). Then the integral is written in the form

\[I = \frac{1}{i} \int_{-\pi}^{\pi} \frac{e^{i\beta}}{\sqrt{|z-a(k-ae)|}} \frac{dz}{i} \]

where the integral contour \(C \) is shown in Fig.7. Here such branch of the multi-valued function \(\sqrt{z-a(k-ae)} \) is chosen that the function is equal to 1 at \(z = a \), with the branch cut \([0, a]\) and \([a, \infty)\). If the integration contour \(C \) is transformed to \(C_{1} \) and degenerated to the line connecting points 0 and \(a \), then we have the following expressions:

\[I = -2P\int_{0}^{\pi} \frac{e^{i\beta}}{\sqrt{|z-a(k-ae)|}} dz \]
\[= -4P\int_{0}^{\pi} \frac{e^{i\beta}}{\sqrt{(d^{2}-l^{2})^{1/2}}} dz \]