JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Fracture & Fatigue
Effect of Interface Control on Mode I Interlaminar Fracture Toughness of Woven C/C Composite Laminates
Masaki HOJOTaketoshi YAMAOMototsugu TANAKAShojiro OCHIAINorio IWASHITAYoshihiro SAWADA
Author information

2001 Volume 44 Issue 4 Pages 573-581


Effects of fiber/matrix interface and matrix microstructure on the mode I interlaminar fracture toughness of C/C composite materials were investigated by coating bismaleimide-triazine co-polymer (BT-resin) on the surface of carbon fiber and changing the heat-treatment temperature (HTT). For the case of laminates with HTT of 1600°C (carbonized C/C composites), the initial fracture toughness, GIC, was insensitive to BT-resin coating. Moreover, the fracture toughness during crack propagation, GIR, increased by coating BT-resin. On the other hand, both GIC and GIR decreased with BT-resin coating for the laminates with HTT of 2500°C. While both GIC and GIR are insensitive to HTT for laminates without BT-resin coating, they both decreased by increasing HTT for laminates with BT-resin coating. The difference of the effects of interface control and HTT was discussed on the basis of microscopic mechanism consideration. Comparison between in-plane and interlaminar strength indicated the possibility to optimize the interface control.

Information related to the author
© 2001 by The Japan Society of Mechanical Engineers
Previous article Next article