JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
PAPERS
A Modified Wavelet Galerkin Method for Analysis of Mindlin Plates
Sachiko NAKAGOSHIHirohisa NOGUCHI
Author information
JOURNALS FREE ACCESS

2001 Volume 44 Issue 4 Pages 610-615

Details
Abstract

A modified wavelet Galerkin method for the analysis of Mindlin plates is proposed. The analysis of Mindlin plates often suffers from ‘shear locking’, which is the phenomena that the overstiff response is estimated under the Kirchhoff constraint condition in the very thin plate. In order to overcome shear locking, in the proposed formulation of wavelet Galerkin method, the B-spline scaling function is adopted for the approximation of transverse displacement field, while the direct derivative of B-spline function is utilized for rotational field, which is consistent with the definition of the transverse shear strain. Various kinds of plate analyses are conducted under several conditions. As results, the completely locking free responses are always obtained if the direct derivative scaling function is used for the approximation of rotational field and the validity of the proposed wavelet Galerkin method is clarified.

Information related to the author
© 2001 by The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top