JSME International Journal Series A Solid Mechanics and Material Engineering
Online ISSN : 1347-5363
Print ISSN : 1344-7912
ISSN-L : 1344-7912
Composition Profile for Improving the Brittle Fracture Characteristics in Semi-Infinite Functionally Graded Materials
Author information

1999 Volume 42 Issue 4 Pages 592-600


In this study, we analyze the composition profile of semi-infinite functionally graded materials(FGMs) with a view to improving the brittle fracture characteristics of these materials. First, a method is developed to calculate the stress intensity factor of an edge crack in semi-infinite homogeneous media with distributed eigenstrain under a far-field uniform applied load. The crack is represented by the distribution of edge dislocations, and a singular integral equation with a Cauchy-type kernel is obtained using the complex potential functions of the edge dislocations. Second, a useful approximation method is established to simulate the nonhomogeneity of semi-infinite FGMs by an equivalent eigenstrain. The stress intensity factor is calculated for this equivalent eigenstrain. Finally, the stress intensity factor of the original semi-infinite FGMs is obtained by principle of superposition. By equating the stress intensity factor to the intrinsic fracture toughness of the FGMs, the apparent fracture toughness is calculated for prescribed composition profiles of the semi-infinite FGMs. Conversely, the composition profiles of prescribed apparent fracture toughness are also determined.

Information related to the author
© The Japan Society of Mechanical Engineers
Previous article Next article