Study on Differences in Turbulence Statistics between Compressible and Incompressible Low-Reynolds Number Turbulent Channel Flows Using Semi-Local Scaling

Youhei MORINISHI** and Shinji TAMANO**

The differences in turbulence statistics between compressible and incompressible turbulent channel flows are investigated at low-Reynolds numbers using semi-local scaling. DNS of the compressible turbulent channel flow between isothermal walls at low-Mach numbers and DNS of the incompressible flow are performed. It is revealed that the reduction in the pressure-strain correlation term is due to the reductions in RMS velocity-derivative fluctuations and in the absolute correlations between pressure and velocity-derivative fluctuations in the compressible turbulent channel flow at low-Mach and Reynolds numbers.

Key Words: Compressible Flow, Turbulent Flow, Numerical Analysis, Supersonic Flow, Incompressible Flow, Channel Flow, DNS, Compressibility Effect, Semi-Local Scaling

1. Introduction

In the last decade, direct numerical simulation (DNS) has been performed to investigate the detailed mechanism of wall-bounded compressible turbulent flows under different thermal boundary conditions. Coleman et al.\(^1\), Lechner et al.\(^2\), Foysi et al.\(^3,4\) and Sarkar et al.\(^5\) performed DNSs of the compressible channel flow between isothermal walls, while Guarini et al.\(^6\) conducted DNS of the boundary layer flow on adiabatic wall, and Maeder et al.\(^7\) simulated the compressible boundary layer developing on laminar adiabatic wall. Morinishi et al.\(^8,9\) performed DNS of the channel flow between adiabatic and isothermal walls and clarified the differences in turbulence statistics between compressible turbulent flows near adiabatic and isothermal walls. In addition to the effect of different thermal boundary conditions on the compressible turbulent flow, for a better understanding of the mechanism it is necessary to compare turbulence statistics between compressible and incompressible turbulent flows. Fortunately, there is a wealth of valuable knowledge available on the turbulence statistics of incompressible turbulent flow. Recently, Foysi et al.\(^14\) compared DNS data on the compressible flow with those for the incompressible flow presented by Moser et al.\(^10\), and they explained the reduction in the near-wall pressure-strain correlation term using a Green’s-function analysis for the pressure field. Sarkar et al.\(^5\) also showed that the attenuation of the pressure-strain correlation was due to decreasing velocity derivative fluctuations. However, the investigation of turbulence statistics related to the pressure-strain term such as the RMS pressure fluctuation, RMS velocity fluctuation and correlation between pressure and velocity-derivative fluctuations is not enough to demonstrate why the pressure-strain correlation is reduced. For the compressible mixing layer and homogeneous shear flow, it is known that the RMS pressure fluctuation increases with the increase in the turbulent Mach number, as a result of which turbulent energy redistribution due to the pressure-strain correlation terms is suppressed\(^11,12\). However, it is not clear whether the mechanism behind the reduction in redistribution for the mixing layer and homogeneous shear flow is valid for the wall-bounded compressible turbulent flow.

It has been well established that turbulence statistics depend on the Reynolds number \(Re\) in the incompressible wall-bounded turbulent flow at low Reynolds number\(^10,13\)–\(^15\). Foysi et al.\(^14\) performed the DNS with \(Re\) up to 1 030 in order to overcome the low-Reynolds number problem in the study of the compressible turbulent channel flow. On the other hand, to consider turbu-
lence statistics at low-Reynolds number, we compare turbulence statistics between compressible and incompressible flows using the same semi-local wall unit \(y^* \), which is based on the semi-local length scale, instead of the standard wall coordinate \(y^* \), while taking account of the effect of the semi-local friction Reynolds number, \(Re_f \), which is based on the semi-local friction velocity, local density and viscosity.

In this paper, we focus on Reynolds stresses and pressure-strain correlation terms at the location \(y^* = 15 \) at which the streamwise turbulence intensity is maximum, and at \(y^* = 45 \) at which the wall-normal turbulence intensity is maximum. The mechanism of the difference in turbulence statistics between wall-bounded compressible and incompressible turbulent flows is investigated using the DNS data on compressible turbulent channel flows at different combinations of Mach and Reynolds numbers, where the Mach number \(M \) is up to 1.5 and the Reynolds number \(Re \) is up to 3000, to improve the reliability of our results. We also conducted a DNS of incompressible turbulent channel flows at various \(Re_f \), since such DNS data have not been presented in any previous DNS database\(^{(10),(14),(15)}\), are required for the present analysis. Although the present Mach numbers seem to be relatively low, comparing with the DNS of Foysi et al.\(^{(4)}\) with \(M \) up to 3.5, it is interesting to identify the qualitative difference in turbulence statistics between compressible and incompressible turbulent flows with semi-local scaling.

2. Outline of DNS Data

2.1 Compressible turbulent channel flow

The continuity, momentum and internal energy equations for a compressible flow are solved in the DNS. We use the DNS algorithm based on an eighth-order B-spline collocation method in the wall-normal (\(x_3 \)) direction and the Fourier Galerkin method in the streamwise and spanwise (\(x_1-x_2 \)) directions. The time-advancement scheme is a third-order low-storage Runge–Kutta method. The detailed DNS algorithm was presented in Morinishi et al.\(^{(8)}\), and the validity of the present code was proven by comparing our results with those of an existing DNS\(^{(1)}\) of compressible turbulent channel flows.

Five computational cases of different combinations of Reynolds number \(Re \) and Mach number \(M \) are considered at the Prandtl number \(Pr = \mu c_p/\kappa = 0.72 \) and the ratio of specific heats \(\gamma = c_p/c_v = 1.4 \) (where \(\kappa \) is thermal conductivity, \(\mu \) is molecular viscosity, \(c_p \) is specific heat at constant pressure, and \(c_v \) is specific heat at constant volume). In this paper, \(\kappa / T \) and \(\rho \) are the density and temperature, respectively. The Reynolds number, \(Re = \rho_u H \mu / \tau_w \), is based on the bulk density \(\rho_u \), \(H \) and \(\mu / \tau_w \), which are the number of grid points and computational region in the \(x_1=x_2=x_3 \) directions, respectively. The no-slip wall boundary condition is used for velocity, and the upper and lower walls are isothermal without any temperature difference. We confirmed that the present DNS data had sufficient resolution and domain size by examining one-dimensional energy spectra and two-point correlations.

2.2 Incompressible turbulent channel flow

We performed the DNS of the incompressible turbulent channel flows at \(Re_f = 100, 150 \) and 300, using a DNS algorithm based on the Chebyshev-tau method in the wall-normal direction, and the Fourier Galerkin method in the streamwise and spanwise directions. The Reynolds number \(Re_f = H / \delta _e \) is defined by the channel half-width \(H \) and viscous length scale \(\delta _e = \nu / \tau_w \), where \(\nu = (\tau_w / \rho)^{1/2} \) is the friction velocity, \(\tau_w \) is the wall shear stress. The continuity and Navier–Stokes equations are solved by the modified Kleiser–Schumann method\(^{(16),(17)}\). A mixed time marching method is used, in which the diffusion term is treated implicitly with the Crank–Nicolson method, and the third-order Runge–Kutta method is used for all other terms.

The physical and numerical parameters and grid resolution based on wall variables are shown in Table 2. The \(Re_f \) values in Cases 1, 2 and 3 are 100, 150 and 300, re-

Table 1 Computational cases of compressible flow

<table>
<thead>
<tr>
<th>Case</th>
<th>(Re)</th>
<th>(M)</th>
<th>(Pr_r)</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>(N_3)</th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>2000</td>
<td>1.0</td>
<td>0.72</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
<tr>
<td>B</td>
<td>2000</td>
<td>1.25</td>
<td>0.72</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
<tr>
<td>C</td>
<td>2000</td>
<td>1.5</td>
<td>0.72</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
<tr>
<td>D</td>
<td>2500</td>
<td>1.5</td>
<td>0.72</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
<tr>
<td>E</td>
<td>3000</td>
<td>1.5</td>
<td>0.72</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
</tbody>
</table>

Table 2 Computational cases of incompressible flow

<table>
<thead>
<tr>
<th>Case</th>
<th>(Re_f)</th>
<th>(N_1)</th>
<th>(N_2)</th>
<th>(N_3)</th>
<th>(L_1)</th>
<th>(L_2)</th>
<th>(L_3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
<tr>
<td>2</td>
<td>150</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
<tr>
<td>3</td>
<td>300</td>
<td>80</td>
<td>80</td>
<td>80</td>
<td>4eH</td>
<td>2H</td>
<td>4eH</td>
</tr>
</tbody>
</table>

spectively. In the table, DNS parameters of Moser et al.(10) at $Re_f = 180, 395$ and 590 are also indicated. We confirmed that the resolution was comparable to that of Moser et al.(10), which was carried out using the same spatial discretization method. The validity of the present simulation was also confirmed by comparing our results with those of previous DNS data(10),(14),(15).

3. Results with Semi-Local Scaling

3.1 Turbulence intensities

The profiles of turbulence intensities scaled by the semi-local friction velocity, $(u'_{\alpha})_{ rms}^\tau = (u'_{\alpha})_{ rms} / u_\tau = (u'_{\alpha}u'_{\alpha})^{1/2} / u_\tau$, ($\alpha = 1, 2, 3$, no summation for α), for compressible flow are shown in Fig. 1 (a), and those of turbulence intensities scaled by the standard friction velocity, $(u'_{\alpha})_{ rms} = (u'_{\alpha})_{ rms} / \tau_s = (u'_{\alpha}u'_{\alpha})^{1/2} / \tau_s$ ($\alpha = 1, 2, 3$), for incompressible flow are shown in Fig. 1 (b). In this paper, the Favre average of a quantity ϕ is given by $\langle \phi \rangle = \langle \rho \phi \rangle / \langle \rho \rangle$, and $'$ represents the turbulent fluctuation with respect to the Favre average, and τ represents the turbulent fluctuation with respect to the Reynolds average. Note that instead of the standard wall unit $y^* = y/\delta$, (y is distance from the wall), the semi-local wall unit $y^s = y/\delta_s$ in the abscissa is used in the Fig. 1 (a), where $\delta_s = (\mu)/(\langle \rho \mu \rangle)$ and $u_\tau = (\tau_s/\langle \rho \rangle)^{1/2}$ are semi-local viscous length scale and semi-local friction velocity, respectively. Even though the difference among five computational cases seems to be relatively small in compressible turbulent flow (Fig. 1 (a)), it becomes much larger when turbulence intensities are scaled by the standard friction velocity (see Foysi et al.(14)). Figure 1 (b) shows that turbulence intensities increase with the increase in Re_f, as shown in a previous study of incompressible flow(14).

In the compressible flow, the Reynolds number based on the semi-local viscous length scale, $Re_f^s = H/\delta_s$, depends on the distance from the wall as shown in Fig. 2. Here we choose $y^* = 15$ and 45 as the optimal locations to investigate the dependence of turbulence intensities on Re_f^s, where $y^* = 15$ and 45 correspond to the locations where streamwise and wall-normal intensities are maximum, respectively (see Fig. 1). The values of Re_f^s at $y^* = 15$ and 45 are also presented in Table 3. In Fig. 3, the values of $(u'_{\alpha})_{ rms}^\tau$ ($i = 1, 2, 3$) and Re_f^s are plotted on the ordinate and abscissa, respectively, at $y^* = 45$. Figure 4 shows the relation between $(u'_{\alpha})_{ rms}^\tau$ ($i = 1, 2, 3$) and Re_f^s at $y^* = 45$. In the present simulation of the incompressible turbulent channel flow, fluid properties such as $\langle \rho \rangle = \rho_w$ and $\langle \mu \rangle = \mu_w$ are constant. Therefore the values of Re_f^s are plotted for incompressible turbulent channel flow, fluid properties such as $\langle \rho \rangle = \rho_w$ and $\langle \mu \rangle = \mu_w$ are constant. Therefore the values of Re_f^s and $(u'_{\alpha})_{ rms}^\tau$ ($i = 1, 2, 3$) at $y^* = 15$ and 45 are plotted for incompressible flow. The dependence of turbulence intensities on Re_f^s for the compressible flow virtually agrees with that on Re_f for incompressible. At $y^* = 15$, $(u'_{\alpha})_{ rms}^\tau$ is larger, while $(u'_{\alpha})_{ rms}^\tau$ and $(u'_{\alpha})_{ rms}^\tau$ are smaller in compressible flow, compared with the incompressible flow. On the other hand, at $y^* = 45$, the difference in turbulence intensities between compressible and incompressible flows is barely discernible. The effect of M on
Fig. 3 Dependence of turbulence intensities on Re^* at $y^* = 15$: (a) $(u''_1)^{rms}$, (b) $(u''_2)^{rms}$, and (c) $(u''_3)^{rms}$

Fig. 4 Dependence of turbulence intensities on Re^* at $y^* = 45$: (a) $(u''_1)^{rms}$, (b) $(u''_2)^{rms}$, and (c) $(u''_3)^{rms}$

$(u''_1)^{rms}$ appears at $y^* = 15$ in addition to the effect of Re^*. The DNS data of Coleman et al.\(^{(1)}\) show that the effect is considerably large at $M = 3.0$, and the effect of M seems to be somewhat scattered. This corresponds to the result of Foysi et al.\(^{(4)}\) that the peak amplitudes of the streamwise turbulence with $M = 3.5$ do not collapse with inner scaling. The data of Case E ($M = 3.0$ and $Re = 3000$) are slightly different from those of Coleman et al.\(^{(1)}\), possibly due to the difference in Prandtl number and temperature dependence of viscosity.

Next, we investigate the reason for the difference in turbulence statistics between compressible and incompressible flows at $y^* = 15$. Possible reasons may be as follows: The production term, $P_{11} = -2\langle \rho \rangle [u''_1 u''_2] \partial [u_1] / \partial x_2$, for the compressible turbulent flow is smaller compared with the corresponding incompressible flow, as are the pressure-strain correlation terms ϕ_{11}, ϕ_{22} and ϕ_{33}. Note that the contribution of the compressibility terms to the energy transfer is negligible and is not the main factor. The production term of streamwise velocity fluctuation normalized by semi-local variables P_{11} for the compressible turbulent flow almost agrees with that of the corresponding incompressible flow (see Fig. 5). Thus, the production term of the streamwise normal stress is hardly related to the difference in turbulence intensities between compressible and incompressible flows. Hence, we shall examine the pressure-strain correlation terms of Reynolds stress $\langle \rho \rangle [u''_i u''_j]$ equation, $\phi_{ij} = \langle p' \partial u_i / \partial x_j \rangle + \langle p' \partial u_j / \partial x_i \rangle$, where p is pressure.

3.2 Pressure-strain correlation terms

Figure 6 (a) and (b) show profiles of the pressure-strain correlation terms in streamwise, wall-normal and...
spanwise normal stress transport equations, \(\phi_{11}^*, \phi_{22}^* \) and \(\phi_{33}^* \) for the incompressible flow, which are normalized by semi-local variables, and \(\phi_{11}^* \), \(\phi_{22}^* \) and \(\phi_{33}^* \) for the incompressible flow, respectively. The values of \(\phi_{11}^* \), \(\phi_{22}^* \) and \(\phi_{33}^* \) in relation to \(Re^* \) at \(y^* = 15 \) and 45 are shown in Figs. 7 and 8, respectively. The absolute pressure-strain correlation terms of the compressible turbulent flow increase at \(y^* = 15 \) and 45 with the increase in \(Re^* \), which is similar to the dependence on \(Re^* \) for the corresponding incompressible turbulent flow, except that the value of \(\phi_{22}^* \) is almost zero at \(y^* = 15 \). The absolute pressure-strain correlation terms of the compressible turbulent flow at \(y^* = 15 \) are smaller than those of the incompressible flow, whereas they are almost the same at \(y^* = 45 \). Hence, the energy transfer due to the pressure-strain correlation terms diminishes, thereby suppressing the redistribution from streamwise turbulence energy to the other components. As a result, the streamwise turbulence intensity of the compressible turbulent flow decreases.
ible flow is larger than that of the corresponding incompressible flow, whereas the wall-normal and spanwise turbulence intensities are smaller (see Fig. 3). This mechanism is supported by the investigation of Fosyi et al. (3), (4) at higher Mach numbers. On the other hand, the pressure-strain correlation terms between compressible and incompressible flows are almost the same as one another at strain correlation terms between compressible and incompressible flows is larger than that of the corresponding incompressible flow. Three possible reasons for this are: (1) The RMS pressure fluctuation \((p')_{rms} = \langle p'^2 \rangle^{1/2}/\langle \rho u_x'^2 \rangle\) diminishes; (2) the RMS velocity-derivative, \((\partial u_x'/\partial x_2)'_{rms} = \langle (\partial u_x'/\partial x_2)'^2 \rangle^{1/2}/(\tau_{xx}/\delta_{xx})\), becomes smaller; and (3) the absolute correlation between pressure and velocity-derivative fluctuations, \(R_p(\partial u_x'/\partial x_2)_{rms} = \langle p(\partial u_x'/\partial x_2) \rangle /(\langle p' \rangle_{rms}(\partial u_x'/\partial x_2)'_{rms})\), decreases (see Hamba (12)). First, the difference in the RMS pressure fluctuation between compressible and incompressible flows does not appear at \(y^* = 15\) (see Fig. 9). Note that Sarkar et al. (5) showed the attenuation for the RMS pressure fluctuation scaled by the wall shear stress, not for \((p')_{rms}'\). Second, the values of \((\partial u_x'/\partial x_2)'_{rms} (\alpha = 1, 2, 3)\) of the compressible flow at \(y^* = 15\) are smaller than those for the corresponding incompressible flow (see Fig. 10). Third, the values of \(R_p(\partial u_x'/\partial x_2) (\alpha = 1, 2, 3)\) at \(y^* = 15\) for compressible turbulent flow are lower than those of the incompressible flow (see Fig. 11). Therefore, the reason for smaller pressure-strain correlation terms at the low-Reynolds and Mach numbers is attributed to the smaller RMS velocity-derivatives as well as the lower absolute correlation between pressure and velocity-derivative fluctuations. Note that the mechanism underlying the wall-bounded compressible turbulent flow is different from those of the compressible mixing layer and homogeneous shear flow, which are due to less RMS pressure fluctuation.

4. Conclusion

The differences in turbulence statistics between compressible and incompressible turbulent channel flows were investigated using semi-local scaling, while taking account of the effect of the semi-local friction Reynolds number \(Re^*_y\). DNS of the compressible turbulent channel flows between isothermal walls at \((M, Re) = (1.0, 2000), (1.25, 2000), (1.5, 2000), (1.5, 2500), (1.5, 3000)\), and the DNS of the incompressible turbulent channel flows at \(Re^*_y = 100, 150, \) and 300 were performed. We chose semi-local wall units \(y^* = 15\) and 45 as the optimal locations to investigate the dependence of Reynolds stresses and pressure-strain correlation terms on \(Re^*_y\), where \(y^* = 15\) and 45 corresponded to the locations where streamwise and wall-normal intensities were maximum, respectively. Compared to incompressible flows, the reduction in the pressure-strain correlation term for compressible flows at \(y^* = 15\), which was not observed at \(y^* = 45\), was due to the reductions in the RMS velocity-derivative fluctuations and in the absolute correlation between pressure and velocity-derivative fluctuations.
Fig. 11 Dependence of correlation coefficients between pressure and velocity-derivative fluctuations on Re^*_p at $y^* = 15$: (a) $R_{p' u_{1}' / \partial x_1}$, (b) $R_{p' u_{2}' / \partial x_2}$ and (c) $R_{p' u_{3}' / \partial x_3}$

Acknowledgments

The authors wish to thank Dr. G.N. Coleman for providing the reference data. We have also benefited from the valuable suggestions provided by Professor K. Nakabayashi. Special thanks are also due to M. Tanizawa for his unfailing support. The computations performed on a FUJITSU VPP300 and a NEC SX-4 at the Center for Promotion of Computational Science and Engineering, Japan Atomic Energy Research Institute, are gratefully acknowledged.

References