JSME International Journal Series B Fluids and Thermal Engineering
Online ISSN : 1347-5371
Print ISSN : 1340-8054
ISSN-L : 1340-8054
Experimental and Computational Stuidy of the Effect of Two-Dimensional Roughness on the Mean Velocity of a Laminar Boundary Layer
Mohammad ali ARDEKANIHirosuke MUNAKATAKiyoaki ONO
Author information
JOURNAL FREE ACCESS

1997 Volume 40 Issue 2 Pages 200-208

Details
Abstract

In this report an experimental and computiational study of the flow behind a two-dimensional square roughness element placed in a laminar boundary layer on a flat plate is described Numerical solutioins of the two-dimensional N-S equations were obtained by the MAC(Marker-and-Cell)method. The experiment was carried out in a low-turbulence wind tunnel. The flow behind the roughness element consisted of a separated region and an external layer. There was no mass transfer between these regions. The computational and the experimental results for these regions were compared. The extent of the separated region depends on κ / δ*κ, where κ is the height of the roughness element and δ*κ is the displacement thickness at the roughness element. When κ / δ*κ is less than a critical value, the computational results agree with the experimental results. The boundary-layer flow separates at the roughness element and returns at 70-κ to the laminar boundary layer. In this case the length of the separated region increases with κ / δ*κ. When κ / δ*κ is larger than the critical value, the length of the separated region decreases with increasing κ / δ*κ, but the computational results do not agree with the experimental ones.

Content from these authors
© The Japan Society of Mechanical Engineers
Previous article Next article
feedback
Top